
International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, January-June 2022, Submitted in May 2022, iajesm2014@gmail.com

 Volume-17, Issue-I 79

Study on a Replicated and Distributed Real-Time Database
Pawan Kumar Pnadey, Research Scholar (CSE), SunRise University, Alwar (Rajasthan)

Dr. Suraj Vishwanath Pote, Associate Professor, Dept. of CSE, SunRise University, Alwar (Rajasthan)

Abstract
Numerous real-time applications have a need for data services in decentralised settings.

However, being able to provide such data services is difficult owing to the lengthy delays that

are associated with distant data accessing and the severe time constraints that are associated

with real-time transactions. When the amount of time required to compute the transactions in

a set is more than the amount of time available on the processor, overload occurs. There

have been many methods proposed to deal with the overload experienced by distributed

replicated real-time database systems; nevertheless, there is not one strategy that deals with

the overload experienced by the system that facilitates the dynamic environment. ORDER-RS

is a dynamic replication method that allows several transactions to access distinct data items.

These transactions may be filed at the same location. However, the overload that is created

at site x as a result of the various transactions is not taken into consideration, despite the fact

that this overload has the potential to prevent and hinder many significant transactions from

meeting their deadlines, which in turn may result in the transaction being rendered

worthless. We have developed an algorithm that deals with the overload that was created in

the ORDER-RS with the help of the term 'importance value of the transaction.' According to

this algorithm, important transactions cannot be prevented from meeting their deadlines

because of the overload that was created in the system.

Keywords: environment, transactions, algorithms

INTRODUCTION

A database is a collection of data that is connected in some way. This is a collection of data

that is connected to one another and has an implied meaning; as such, it is a database. A

database is a representation of some facet of the actual world; this representation is

sometimes referred to as the mini-world or the Universe of Discourse (UoD). The database is

updated to reflect any changes made to the miniature world. A database is developed,

constructed, and filled with data for the express purpose for which it was created. It already

has a certain audience of users in mind, as well as some predefined applications that may be

of interest to those consumers. A database, in other words, is characterised by the presence of

a source from which the data are obtained, a degree of interaction with events that take place

in the actual world, and an audience that is actively engaged in the contents of the database.

The database is managed by a centralised distributed database management system

(DDBMS), which treats the data as if it

were all stored on the same computer. In

contrast, a distributed database is a

database that is stored on many

computers. in which different parts of

the database are kept on different

computers that are connected together

through a network .Users have access to the

piece of the database that is located

at their location, which enables them to

access the data that is pertinent to their

duties without

Figure 1: Architecture of Distributed Database System

interfering with the work that is being done at other locations. The DDBMS performs

periodic data synchronisation on all of the data and, in situations where multiple users need

access to the same data, ensures that any updates or deletes performed on the data at one

location will be automatically reflected in the data stored elsewhere. In addition, the DDBMS

synchronises the data so that, in cases where multiple users need access to the same data, it

ensures that any updates Figure 1 depicts a distributed database system, which is the result of

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, January-June 2022, Submitted in May 2022, iajesm2014@gmail.com

 Volume-17, Issue-I 80

the merging of two seemingly irreconcilable methods of data processing: database systems

and computer networks. [6] This is shown in the accompanying figure.

CONCEPTS OF REAL TIME DATABASE

The quantitative concept of time is referred to as real time. The accuracy of the time is

determined by the physical clock. When it is necessary to use a quantitative representation of

time (also known as real time) in order to explain the behaviour of a system, we refer to that

system as a real time system. Distributed platforms are being used in the development of real-

time applications at an increasing rate. There is a multitude of factors contributing to the rise

in popularity of distributed implementations. One key reason is that it is often more cost

efficient to have a decentralised solution that makes use of many different pieces of

inexpensive hardware as opposed to having a centralised solution that makes use of a

complex and pricey machine. The absence of single points of failure is another another

argument in favour of distributed implementations. tolerance is one of the key qualities that

differentiates real-time systems from other types of computer systems that are not real-time.

Because real-time systems may be used to such a vast array of different goods and

applications, it can be challenging to generalise the features of these systems into a set that is

relevant to each and every system.

Every real-time activity comes with its own unique set of challenges, including time limits.

Deadlines that are attached to tasks are an example of a kind of time restriction. The period

by which a job has to be finished and its outcomes produced is referred to as the deadline for

the task. The real-time operating system, often known as RTOS, is the component of a

computer system that is accountable for ensuring that all tasks complete within the allotted

amount of time.

The New Correctness Criteria Are As Follows: In real-time systems, accuracy refers not only

to the logical correctness of the outcomes, but also to the significance of the moment at which

the findings are created. If the result was generated after the deadline, then it would be

regarded an erroneous result even if it was logically valid.

Figure 2: A Schematic Representation Of An Embedded Real Time System

Embedded: The overwhelming majority of real-time systems are now embedded in the

surrounding environment. As depicted in figure 2, an embedded computer system is one that

is physically "embedded" in its surroundings and often controls that environment.

Safety-Criticality: When it comes to conventional, non-real-time systems, safety and

dependability are two separate concerns. On the other hand, these two concerns are

inextricably intertwined in many real-time systems, which makes them very safety-sensitive.

A safety-critical system is needed to have a very high level of reliability since the

consequences of any failure of the system might be very severe.

Concurrency is the ability of a real-time system to react to several independent events in a

very short amount of time while adhering to extremely severe time limits. Take, for instance,

a chemical plant automation system as an example. This kind of system monitors the

progression of a chemical reaction and regulates the pace at which the reaction occurs by

altering various parameters of the reaction, such as the pressure, temperature, and chemical

concentration. These characteristics are determined by the use of sensors that were

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, January-June 2022, Submitted in May 2022, iajesm2014@gmail.com

 Volume-17, Issue-I 81

permanently installed in the chemical reaction chamber It's possible that these sensors will

provide data asynchronously and at varying speeds. Because of this, the real-time system has

to handle data from all of the sensors at the same time; if it doesn't, signals might be lost and

the system could become unreliable.

Structures that are Distributed and Involve Feedback: In these types of systems, the various

events of interest take place in geographically distant places. As a result, the sites where

events are created are a logical choice for the placement of the sensors and the actuators. The

feedback mechanism shown in figure 3 is present in a significant number of real-time

systems, both centralised and distributed. In these types of systems, the sensors often take

readings of the surrounding environment at regular intervals. The data that is sensed about the

environment is analysed in order to establish the essential actions that need to be taken. The

results of the processing are used to carry out the necessary corrective actions on the

environment via the actuators, which in turn again create a change to the needed

characteristics of the controlled environment, and so on and so forth.

Figure 3: Feedback Structure Of Real-Time Systems

The criticality of a job may be seen as a measurement of the potential losses that might result

from its failure. The importance of the outputs that a task produces to the efficient operation

of the system is one of the factors that goes into determining the work's level of criticality. It's

possible for a real-time system to have jobs with wildly varying degrees of importance. When

designing for fault tolerance, it is only normal to anticipate that the criticalities of the various

jobs would need to be taken into mind. When a task's degree of criticality increases, the

degree to which it should be dependable also rises. In addition, it is essential to have quick

failure detection and recovery procedures in place in the event that a very vital job fails.

However, it is important to keep in mind that task priority is not the same thing as task

criticality, and that task criticality is not the only factor that determines task priority or the

sequence in which distinct activities are to be carried out.

Hardware Created and Built Specially for the Purpose Real-time systems are often

implemented on specialised hardware that is designed and developed just for the purpose of

running the system.Real-time systems are often described as being reactive. One definition of

a reactive system is one in which there is a continuous interaction taking place between the

computer and the surrounding environment. The output data of ordinary systems are

generated by applying functions to the input data in order to calculate those functions.

Real-time systems, in contrast to more conventional methods of computing the output as a

straightforward function of the data fed into it, do not generate any output data but rather

engage into a continuous interaction with the environment in which they are embedded. The

findings that were calculated are used in each phase of the interaction process to carry out

various actions on the environment. The system takes a sample of the response of the

environment and then feeds that information back into itself. As a result, the calculations in a

real-time system have the potential to go on indefinitely. Figure 4 provides a diagrammatic

representation of this reactive behaviour that is characteristic of real-time systems.

Stability: Under situations of overload, real-time systems are required to continue meeting the

deadlines of the jobs that are considered the most vital, even while the deadlines of tasks that

are not considered essential may not be fulfilled. This is in contrast to the demand of fairness

that is placed on conventional systems even when they are operating at capacity.

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, January-June 2022, Submitted in May 2022, iajesm2014@gmail.com

 Volume-17, Issue-I 82

Processing of Exceptions: The majority of real-time systems are designed to run unattended

and so are capable of working around the clock. It is more difficult to take remedial steps in

the event of a failure when there are no human operators present. It is to everyone's benefit,

even if there is no immediate possibility of taking remedial steps, that a failure does not result

in catastrophic circumstances. A failure should be identified, and rather than turning off

suddenly, the system should continue to run in a state that is gracefully degraded rather than

the original one.

REPLICATION

When it comes to enhancing the availability of data in distributed systems, replication is the

most important element. The process of distributing information in order to ensure data

consistency among redundant resources, such as software or hardware components, in order

to enhance dependability, fault-tolerance, or accessibility is referred to as replication. If the

same data is saved on many devices, it may be a case of data replication.

storage devices. The process by which directory data is routinely copied from one directory

Server to another directory Server is known as replication. Any directory tree or sub-tree,

each of which is maintained in its own database, may be replicated on other servers by using

replication. The Directory Server, which stores the authoritative version of the information, is

responsible for propagating any revisions to all of the replicas. Data that has been replicated

is kept in numerous locations so that users may still access it even if some of the copies are

unavailable as a result of problems at one of the storage locations. The requirement that

repeated copies act and behave like a single copy, i.e., that both mutual consistency and

internal consistency be maintained, is one of the most important limitations placed on the use

of replication. Studies have been done on synchronisation strategies for replicated data in

distributed database systems with the goals of increasing the degree of concurrency and

decreasing the likelihood of a transaction rolling back. It is possible to store data in several

locations when using a distributed system. The widespread availability of workstations and

personal computers has made replication an appealing option for a number of different

reasons. Replicating the data and storing it at several locations is one strategy for enhancing

the availability of the data in a system that has sites that are not dependable for the kind of

transaction being performed. Replicated data are not rendered inaccessible by the failure of a

single site; the system is still able to retrieve the data even when failures occur at many sites,

even if some of the redundant copies are unavailable. Replication improves the performance

of a system by bringing the data that is required for a process closer to where it is being

replicated. This results in enhanced availability. For instance, queries that are started at

locations where the data are stored can have their results processed locally without any

communication delays being incurred, and the workload associated with queries can be

distributed across multiple locations where the query's individual subtasks can be worked on

simultaneously. The implementation of replication techniques has become more cost-

effective as a result of two significant advances in technology: the availability of inexpensive

processors and memory, which has made it more cost-effective to develop large networks;

and the development of new communication technology, which has made it feasible to

implement distributed algorithms with substantial communication requirements.

Nevertheless, it is necessary to weigh the advantages of data replication against the extra

costs and difficulties that are incurred throughout the process of synchronising duplicated

data.

It is impossible to ensure that all copies are identical at all times when updates are processed

in the system due to the inherent communication delay that exists between sites that store and

maintain copies of replicated data. This delay occurs between sites that store and maintain

copies of replicated data. The primary objective of a synchronisation mechanism for

duplicated data is to ensure that all changes are applied to each copy in a manner that ensures

the mutual consistency. This is accomplished by ensuring that all updates are done in a

synchronous manner. A distributed system must not only meet the requirement of mutual

consistency, but also other constraints. In a system in which several users access and change

data at the same time, it is possible that operations from various transactions will need to be

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, January-June 2022, Submitted in May 2022, iajesm2014@gmail.com

 Volume-17, Issue-I 83

interleaved and permitted to work simultaneously on data in order to achieve a higher level of

system throughput. The execution of read and write operations of transactions in an

interleaved fashion may provide inaccurate results.

The process of coordinating concurrent requests to a database in order to get the same result

as would be achieved by carrying out each request in a sequential order is referred to as

concurrency control. The process of concurrency control in a distributed system is

significantly more difficult than its counterpart in a centralised system. This is primarily due

to the fact that the information that is used to make scheduling decisions is also distributed

across the system, and it must be managed effectively in order to arrive at the best possible

decisions. It is possible that an update may be missed, and erroneous retrieval will take place,

if an appropriate concurrency control mechanism is not utilised to limit the techniques of

interleaving the activities coming from distinct transactions.

ISSUES CONTAINED WITHIN A REPLICATED AND DISTRIBUTED REAL-TIME

DATABASE

The design of a replicated DRTDBS has a number of challenges in order to meet its criteria

the most significant of which are maintaining data consistency and increasing the system's

capacity to scale. All of these essential computer systems need data to be retrieved and kept

up to date in a timely manner. On the other hand, there are instances when the data that is

required at a place is not accessible at the time that it is required, and acquiring it from a

distant site may take too long, at which point the data may become invalid. Because of this, it

is possible that a significant number of transactions may fail to complete before the deadline,

therefore breaching the time restrictions of the transaction that requested them. Replicating

data in real-time databases is one of the approaches that may be used to address the issue that

was described before. Transactions that need to read remote data can now access the locally

available copies, which helps transactions meet their time and data freshness requirements

.This is made possible through the replication of temporal data items, which eliminates the

need for transactions to ask for remote data access requests. To eliminate the unpredictability

of network delays or network segmentation, replication is used in DRTDBs. This ensures that

the database is completely duplicated to each and every node. Additionally, it enhances the

fault tolerance of the data that is resident in the main memory. The most important concerns

are detailed down below.

Synchronization of Replicated States and Maintaining Consistency: Data replication has

become a technique that is well understood and actively used for a variety of purposes,

including increasing the scalability, availability, fault tolerance, and responsiveness of

distributed systems. This has been made possible by various research and active usage of the

technique. When implementing replication of application data, a synchronisation mechanism

has to be included into the distributed system in order to assure that the data copies adhere to

a certain consistency model. Applications that are distributed are distinct from one another in

a number of aspects, including the scale of the distributed system and the database. It has

been possible to establish notions such as the total update rate of data or the ratio of read

accesses to write accesses. Take, for instance, active or passive replication in conjunction

with eager or slow synchronisation. Every one of them acts differently with relation to

qualities such as scalability, fault-tolerance, or reactivity. The two primary update

propagation approaches, eager replication and slow replication, which will be explored more

below, are broadly introduced and debated on their appropriateness for usage in the

innovative entity replication technique for interactive virtual environments that is provided

here.

Eager Replication: The idea behind eager replication is to ensure that all replicated copies of

the item being altered are brought up to date as part of the initial processing of the client

request that was received. Therefore, an update operation is carried out on all of the

distributed copies of the object before a notice is sent back to the client. This particular

synchronisation strategy calls for the use of nested transactions in conjunction with a

distributed commit protocol, such as the two-phase commit, or a reliable atomic multicast, in

order to guarantee the atomicity of the distributed update. Before the procedure can be

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, January-June 2022, Submitted in May 2022, iajesm2014@gmail.com

 Volume-17, Issue-I 84

completed and the answer can be sent to the client the servers that are keeping the copies

need to interact with one another in a number of different phases.

Lazy Replication: Lazy replication does not instantly update all remote replications; instead,

it merely modifies the state of the local copy on the replication server that was given the

initial request before it sends the answer to the client. The updated state of the object is

finally propagated to the other copies at some point in the future after some amount of time

has passed. A quick response is sent to the client by the lazy replication technique since the

server that was given the initial request already delivers a notification response once the local

update has been carried out. However, in order to guarantee that the state of the replication

application is always consistent, this method necessitates the inclusion of a coordinating

mechanism. Without such a subsequent process, duplicated object copies would become

inconsistent due to the fact that after performing the first client request, each server modifies

the state of the objects in a way that is independent from the other servers.

PROTOCOL FOR DYNAMIC REPLICATION IN REAL-TIME DISTRIBUTED

DATABASE

In medium-scale or large-scale distributed real-time database systems, there are numerous

techniques of replication control, as well as a replication algorithm called On-demand. Real-

time Decentralized Replication, also known as ORDER, was developed with the intention of

functioning in an ecosystem in which all of the data kinds and relations present in the system

are known a priori and in which transactions are short-term periodic operations. In large-scale

distributed real-time databases, it's possible that the ORDER algorithm won't perform very

well. To begin, when large-scale distributed systems are in use, it may be prohibitively

expensive or perhaps impossible for each site that makes up the system to keep precise

information on all of the data elements that make up the system. Second, it is possible that it

will not always be productive to get all of the most recent data items straight from their

official website. Instead, the site may get new copies from some of the active replicas that

already exist and are located nearby. These are the replicas that can be accessed with less

delays in the transfer of data. On the other hand, the On-demand Real-time Replication with

Replica Sharing (ORDER-RS) technique may improve a replication algorithm's scalability.

Using this approach, big distributed systems are broken up into smaller groups that are

referred to as cliques. These cliques are based on the topology of the network. The members

of a single clique are responsible for sharing the clones among themselves. In comparison to

the ORDER algorithm, the ORDER-RS algorithm is able to significantly increase the

performance of the system even when the size of the system expands to extremely large

levels.

ORDER-RS REPLICATION ALGORITHM CONCEPT

By dynamically adjusting the update frequency and update duration of replicas, the ORDER-

RS algorithm hopes to achieve greater efficiency compared to other replication schemes, such

as complete replication. Each node in the database model may have a number of copies and

temporal data items stored inside it. While the main copy of a data item receives periodic

updates at a certain basic update frequency (BUF), the replicas of that data item get updates at

various extended update frequencies (EUF), which are set by the incoming application

transactions. Every replica of a data item receives an update that uses the most recent value

taken from its parent copy. As a result, the BUF of the main copy serves as the upper

constraint for the EUF of any particular data item. An active replica is a copy that receives

regular updates, as defined by the definition of the term. If this is not the case, we refer to it

as a dormant duplicate. If there are no more incoming application transactions that need an

active replica, then that replica will go into a dormant state. It is referred to by its closure time

(CT), which is the point in time when it goes into a dormant state. The transactions that make

up the periodic transaction workload model are repeated at regular intervals and have well

defined data needs and service durations. At any point in time, a transaction may come, and

within each transaction there may be requests for many data objects originating from several

websites. The following is an example of the specification for a transaction:

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, January-June 2022, Submitted in May 2022, iajesm2014@gmail.com

 Volume-17, Issue-I 85

OBJECTIVE

1. To study on Order-Rs Replication Algorithm Concept

2. To study on protocol for dynamic replication in real-time distributed database

3. To study on Replicated And Distributed Real-Time Database

ALGORITHM DESCRIPTION

In the ORDER method, the update frequency and update duration of replicas are constantly

regulated in order to fulfil the data freshness requirements of the incoming transactions.

These criteria demand that the data be as current as possible. When a transaction is received

by the algorithm, it first assesses the data requirements of the transaction and then generates

data replicas for the transaction if it is determined that the transaction may be allowed in light

of the existing system circumstances. Additionally, it keeps track of the update frequency and

duration to the principal sites that these replicas are connected to. Within the framework of

the algorithm, the receiving site is responsible for registering active replicas with their

respective main sites. The main site is responsible for pushing updates to the active replicas at

the increased frequency that are needed by the incoming transactions. When a transaction is

accepted by a local site, the algorithm determines the appropriate update frequency and

update duration for each distant data item that the transaction specifies. Let's say that the

algorithm is contacted by site x with a request for the distant temporal data item i. In Fig. 3.1,

the pseudo code for the replication technique is shown for your perusal.

When a new transaction is received, the algorithm checks to see if there is already an active

replica of the remote data item being requested by the transaction. This is illustrated in Figure

3.1. When a new transaction arrives, the algorithm performs this check for each remote

temporal data item being requested by the transaction. The update frequency that is currently

being used by the replica is compared by the algorithm with the update frequency that is

being requested by the new transaction if there is already an active replica in existence. The

update frequency of the current replica is adjusted to match the new update frequency that is

required by the transaction if the new transaction demands that the replica be updated at a

greater frequency than before. In such event, the time at which the replica is set to close is

adjusted to reflect the current time plus the amount of time required for the new transaction.

If the update frequency of the replica that is being requested by the new transaction is lower

than the update frequency of the original transaction, the algorithm does not need to take any

action since the existing update frequency is already sufficient [19]. In the event that there is

not already an active replica for the distant temporal data item, the algorithm will generate

one for that data item. use the new transaction's update frequency and duration as our guide.

In order for the algorithm to be able to keep track of all transactions that utilise the data

replicas until they become obsolete, this is a requirement for maintaining the minimum

update frequency for all active replicas. In addition to this, the algorithm has to recalculate

the update frequency of any replicas that are being accessed by a transaction that is about to

expire. Figure 3.2 depicts the pseudo code that is used for the transaction departure. When a

transaction is about to leave the system, its desired update frequencies on active replicas are

verified. This process is shown in Figure 3.2. In the event that it demands the maximum

update frequency for an active replica, the calculation for the active replica's update

frequency as well as its closure time will need to be redone. The software needs to determine

the maximum update frequency that may be requested without causing the transaction to time

out. The expiration time of the transaction that demands the greatest update frequency is

subsequently used to establish the closure time of the replica.

ORDER-RS: DYNAMIC REPLICATION ALGORITHM

An example is presented in Fig. 3.3. The image depicts a high-speed local area network

(LAN) that connects two real-time databases, DB1 and DB2. An operational duplicate of a

distant temporal data item may be found in DB1. The fresh data values from the original site

are copied over to the active replica on a regular basis so that it may be kept up to date. Now,

DB2 will allow a new transaction that requires the same remote data to proceed. Since there

is already an active copy of the data value stored in DB1, which can be accessed without any

difficulty, it would be inefficient for DB2 to get the data value from the distant site a second

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, January-June 2022, Submitted in May 2022, iajesm2014@gmail.com

 Volume-17, Issue-I 86

time. The demand of both the network and the main site is increased needlessly when new

data is fetched straight from the primary site. Instead, retrieving the data from DB1 is the

better course of action to take. The system only needs to duplicate data from active replica 1

to active replica 2 if the update frequency of the active replica at DB1 can match the

requirements of the new transaction in DB2. In this case, the system does not need to

replicate data from active replica 3 to active replica 1.

Figure 4 Fetching Fresh Data From Closer Active Replicas

If the new transaction needs a higher update frequency, the system is able to stop duplicating

data from the main copy to the active replica 1 at this moment. This is only possible if the

new transaction requires the higher update frequency. Instead, it makes a copy of the data by

first copying it directly from the main copy to replica 2 (with a higher update frequency), and

then it makes a copy of the data by first copying it from replica 2 to replica 1. Finally, it

duplicates the data by first copying it from replica 2 to replica 1. An illustration of such an

example may be seen in figure 3.4. In the picture, you can see an illustration of a database

system that is an example of a medium-scale distributed real-time system. This infrastructure

is equipped with a total of twenty-four real-time database servers. As a result of their being

eight transmission stations, the real-time database servers are able to interact with one

another. The topology of the network was used to categorise the various systems into six

separate cliques, which were then grouped together. The wired high-speed networks that

connect the real-time databases that are contained inside each clique are connected to the

multiple-hop wireless networks that link cliques, and these multiple-hop wireless networks

are connected to one another via the wired high-speed networks. Additionally, we take it as

given that individuals who are a part of the same group are aware of the existence of other

individuals who are a part of the same group. These presumptions are in line with the real

configuration of the system that is used in the combat control systems. When it comes to

these kinds of systems, the real-time database servers that are located on board a single ship

or submarine are connected to one another by means of a high-speed Ethernet connection. On

the other hand, communication between ships takes place across international wireless

networks or on-land transmission stations.

Figure 5 . Replica Sharing in Large Distributed Systems

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, January-June 2022, Submitted in May 2022, iajesm2014@gmail.com

 Volume-17, Issue-I 87

Using the ORDER-RS algorithm, the database servers that belong to a certain clique will

share the replicas that are located within that clique. There is a leader of each clique who is

responsible for managing the replication process inside that particular clique. When members

of a clique require temporal data items from database servers located in other cliques, the

leader of that clique acts as a proxy for those members and controls all of the replicas

included within that clique. When a member of the clique requires access to remote temporal

data, it first investigates the location of the data item that is being sought. If the requested

data item is held by a member of the same clique, it just has to send a request to that member

to begin the replication process. This happens only if the requested data item is localised

inside the same clique. If the data is located on a database server belonging to a separate

clique, then the request is forwarded to the leader of the local clique. As soon as the request is

received, the leader of the local clique checks to see whether there is already a duplicate of

the data somewhere else inside the clique. If there is, the leader of the clique will adjust the

replica update frequency so that it corresponds to the frequency that is now being requested

the most, and all requests coming from members of the clique will now be able to share the

replica. If the requested distant data item does not already have a replica that corresponds to

it, the leader of the clique will create a new replica and give it the update frequency and

duration that was requested. However, the replication between two clique members within a

clique is handled directly by the clique members themselves, whereas the replication between

database servers in different cliques is handled by the clique leaders. The update frequency

and duration calculation processes on transaction arrival and departure are almost the same as

those described in Fig. 3.1 and Fig. 3.2.

PERFORMANCE EVALUATION OF ORDER-RS PROTOCOL

We model a bigger distributed real-time database system in which ORDER, ORDER-RS, and

the suggested algorithm are all being executed simultaneously. The network is comprised of

32 real-time database servers and is organised into a total of eight cliques. In addition to this,

each clique is connected to four different websites. The transmission lags caused by the

network Both the dynamics occurring within a clique and those occurring between cliques are

modelled independently. The transmission that occurs within a clique is much quicker, taking

just 0.5 millisecond to complete, however the transmission that occurs between separate

cliques might take as long as 2 milliseconds to complete. These system parameters can be

translated to a decentralised real-time database that is used by a naval fleet during a battle to

facilitate the sharing of real-time data between ships and submarines.

CONCLUSION

At this point, we have taken advantage of the fact that it is difficult to access the duplicated

data in the company RTDBS, specifically the concurrent execution of transaction problem in

real time replicated databases. This new method can be readily incorporated and put into use

in the systems that are currently in place. This suggested protocol surpasses previous

protocols such as ORDER and ORDER-RS in terms of the proportion of transactions that are

killed and the amount of system usage they need. Also, in this article, it is stated that a

blocked transaction might borrow a data item after reaching the High Priority point by the

executing transaction. As a result, the waiting time of transactions in queue will be shortened,

which will be a positive outcome.

To establish this strategy as a value-based commercial offering, more effort, including a

comprehensive real-world execution of this work, is necessary. This work will be included in

future work.

REFERENCES

1. Chastek, Gary, Graham, Marc H., and Zelesnik, Gregory. Notes on Applications of the

SQL Ada Module Description Language (SAMeDL). Tech. Rept. CMU/SEI-91-TR-12,

Software Engineering Institute, June 1991.

2. Chung, J-Y. and Liu, J. W-S. Algorithms for Scheduling Periodic Jobs to Minimize

Average Error. IEEE Real Time Systems Symposium, 1988, pp. 142-151.

3. Dayal et al. "The HiPAC Project: Combining Active Database and Timing Constraints".

SIGMOD Record 17, 1 (March 1988), 51-70.

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, January-June 2022, Submitted in May 2022, iajesm2014@gmail.com

 Volume-17, Issue-I 88

4. DeWitt, D. J., Katz, R. H., Olken, F., Shapiro, L. D., Stonebraker, M. R., and Wood, D.

Implementation Techniques for Main Memory Database Systems. Proceedings of the

ACM SIGMOD Conference on Management of Data, 1984, pp. 1-8.

5. Elhardt, K. and Bayer, R. "A Database Cache for High Performance and Fast Restart in

Database Systems". ACM Transactions on Database Systems 9, 4 (December 1984),

503-525.

6. Eswaran, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L. "The notions of consistency

and predicate locks in a database system". Communications of the ACM 19, 11 (1976),

624-633.

7. Fan, C. and Eich, M. H. Performance Analysis of MARS Logging, Checkpointing and

Recovery. Proceedings of the 22 Annual Hawaii International Conference on System nd

Sciences, 1989, pp. 636-642.

8. Garcia-Molina, H. "Using Semantic Knowledge for Transaction Processing in a

Distributed Database". ACM Transactions on Database Systems 8, 2 (June 1983), 186-

213.

9. Gray, J. N., Homan, P., Korth, H., and Obermarck, R. A Straw Man Analysis of the

Probability of Waiting and Deadlock. Tech. Rept. RJ3066, IBM Research Laboratory,

February 1981.

10. Hall, D. L. and Llinas, J. Data Fusion and Multi-Sensor Correlation. Slides for a course.

mailto:iajesm2014@gmail.com

