
International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, July-December 2020, Submitted in December 2020, iajesm2014@gmail.com

 Volume-14, Issue-I 238

Approach Used in Developing Open Source Software: A

Comprehensive Analysis
V.Ramesh, Dept. of Computer Science, Research Scholar, SunRise University, Alwar(Rajasthan)

Dr.Prasadu Peddi, Dept. of Computer Science, Associate Professor, SunRise University , Alwar (Rajasthan)

ABSTRACT
Open Source Software (OSS) has gained significant prominence in the software industry,

with its collaborative and transparent development model. This research paper aims to

provide a comprehensive analysis of the approaches employed in developing open-source

software. The study investigates key aspects such as community collaboration, version

control, licensing, and quality assurance methodologies. By understanding these approaches,

software developers and researchers can gain valuable insights into the development

practices that drive the success of open-source projects.
Keywords: Open Source Software (OSS), Licensing, Quality Assurance

INTRODUCTION

1.1 Background

Open Source Software (OSS) refers to software that is freely available, allowing users to

view, modify, and distribute its source code. The concept of open-source development

emerged in the late 1990s as a response to the proprietary software model. It gained

momentum due to the collaborative efforts of a community of developers who shared their

work and collectively improved upon it. The success and popularity of open-source projects

such as Linux, Apache, and MySQL have demonstrated the effectiveness of this development

approach.

1.2 Objective

The objective of this research paper is to provide a comprehensive analysis of the approach

used in developing open-source software. It aims to explore the various aspects and

methodologies employed by open-source communities to facilitate collaboration, ensure

software quality, manage versions, and address challenges. By understanding these

approaches, software developers and researchers can gain insights into the practices that drive

the success of open-source projects and contribute to the advancement of the software

industry.

REVIEW OF RELATED WORK

Venkatesh-Prasad Ranganath:

Ranganath, V. P., et al. (2014). "A theory of software customization for the masses:

Continuous personalization." IEEE Transactions on Software Engineering.

Ranganath, V. P., et al. (2012). "Software customization: A flexibility perspective." ACM

Transactions on Software Engineering and Methodology.

Sridhar Chimalakonda:

Chimalakonda, S., & Prasad, A. (2013). "A comprehensive empirical study on evolution of

open-source software projects." ACM SIGSOFT Software Engineering Notes.

Amit K. Srivastava:

Srivastava, A. K., et al. (2017). "Open Source Software Development: A Systematic

Literature Review." Proceedings of the International Conference on Inventive

Communication and Computational Technologies (ICICCT).

Srivastava, A. K., et al. (2020). "Measuring Trustworthiness of Open Source Software."

Proceedings of the International Conference on Computing, Power and Communication

Technologies (GUCON).

Debasis Samanta:

Samanta, D., et al. (2017). "On the Usage of Technical Debt in Open Source Software

Projects: An Empirical Study." Proceedings of the International Conference on Open Source

Systems (OSS).

Samanta, D., et al. (2018). "Analyzing the Factors Influencing User Ratings in Mobile App

Stores: A Cross-Platform Study." International Journal of Information Technology and

Decision Making.

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, July-December 2020, Submitted in December 2020, iajesm2014@gmail.com

 Volume-14, Issue-I 239

Deepak Chawla:

Chawla, D., et al. (2017). "Evaluating the Relationship Between OSS Maturity and Software

Quality: A Quantitative Study." International Journal of Open Source Software and

Processes.

Chawla, D., et al. (2019). "An Empirical Study on the Impact of Continuous Integration on

Software Quality in Open Source Projects." Proceedings of the International Conference on

Open Source Systems (OSS).

Alok Mishra:

Mishra, A., et al. (2018). "An Empirical Study of the Effectiveness of Documentation in

Open Source Software." Proceedings of the International Conference on Open Source

Systems (OSS).

Mishra, A., et al. (2020). "Understanding the Importance of Collaboration in Open Source

Software Development: An Empirical Study." Proceedings of the International Conference on

Open Source Systems (OSS).

COMMUNITY COLLABORATION
The community plays a pivotal role in the development of open-source software. It consists

of individuals with diverse skills and backgrounds who voluntarily contribute their time,

expertise, and resources to the project. The community contributes to various aspects,

including coding, testing, documentation, user support, and project management.

Collaboration within the community fosters innovation, peer learning, and the collective

improvement of the software. Effective communication channels are essential for community

collaboration in open-source software development. These channels facilitate interactions

among community members, enabling them to share ideas, discuss issues, and coordinate

their efforts. Common communication channels include mailing lists, discussion forums, real-

time chat platforms (e.g., IRC, Slack), and social media groups. These channels promote

transparency, inclusiveness, and open dialogue within the community. Issue tracking and bug

reporting systems are crucial for managing and resolving software issues in open-source

projects. These systems enable community members to report bugs, suggest enhancements,

and track the progress of issue resolution. Popular issue tracking tools include Bugzilla,

JIRA, and GitHub Issues. Effective use of these systems helps streamline bug fixing,

coordinate contributions, and maintain a record of the project's development history.

Documentation and knowledge sharing are vital for open-source projects to ensure

transparency and facilitate the onboarding of new contributors. Documentation includes

technical specifications, installation guides, API references, and user manuals. It helps users

understand the software, enables developers to contribute effectively, and encourages

collaboration within the community. Knowledge sharing platforms, such as wikis, forums,

and collaborative editing tools, facilitate the creation and dissemination of project-related

information among community members.

VERSION CONTROL SYSTEMS

Importance of Version Control: Version control systems (VCS) are essential tools in open-

source software development as they track changes made to source code files over time. They

provide a centralized repository where developers can store, manage, and collaborate on

code. Version control enables multiple developers to work simultaneously on different parts

of the codebase while keeping track of changes, ensuring code integrity, and facilitating

collaboration.

Distributed Version Control Systems (DVCS): Distributed Version Control Systems

(DVCS) have gained significant popularity in open-source software development. Unlike

centralized VCS, DVCS allows each developer to have their own copy of the entire

repository, including the complete history. This distributed nature of DVCS provides several

advantages, such as offline work, faster access to history, and improved collaboration among

geographically dispersed teams.

Git and its Impact on OSS Development: Git, a DVCS developed by Linus Torvalds, has

revolutionized open-source software development. Git provides a powerful and flexible

platform for managing source code, offering features like lightweight branching, fast

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, July-December 2020, Submitted in December 2020, iajesm2014@gmail.com

 Volume-14, Issue-I 240

performance, and easy collaboration. Its impact on OSS development is profound, as it

enables seamless code sharing, encourages parallel development, simplifies contributions,

and facilitates community collaboration. Git hosting platforms like GitHub and GitLab have

further enhanced the visibility and accessibility of open-source projects.

Branching and Merging Strategies: Branching and merging are crucial aspects of version

control in OSS development. Branching allows developers to create separate code branches

for different features, bug fixes, or experiments. It enables parallel development and isolates

changes from the main codebase until they are ready for integration. Merging combines

changes from one branch into another, allowing developers to incorporate new features or

bug fixes back into the main codebase. Effective branching and merging strategies ensure

code stability, facilitate collaboration, and support efficient release management.

Common branching and merging strategies in open-source projects include:

Feature Branching: Creating branches for specific features or enhancements.

Release Branching: Creating branches for preparing and stabilizing releases.

Git Flow: A popular branching model that defines specific branch types and their purposes

(e.g., feature branches, develop branch, release branch).

Fig.1: Branching Strategies in GIT

LICENSING

4.1 Open Source Licenses Overview

4.2 Importance of License Selection

4.3 Popular Open Source Licenses and their Implications

QUALITY ASSURANCE METHODOLOGIES

Continuous Integration (CI) is a software development practice that involves integrating code

changes frequently into a shared repository and running automated tests to detect integration

issues early. This methodology ensures that changes made by different developers can be

merged smoothly and that the software remains stable and functional. CI systems

automatically build the software from the latest code changes, ensuring that the project can be

built successfully and without errors. Various types of tests, such as unit tests, integration

tests, and regression tests, are executed automatically to validate the correctness and

functionality of the software. By running tests on a regular basis, CI detects issues like build

failures, test failures, or code conflicts early in the development process, allowing developers

to address them promptly. CI tools often provide code quality metrics, such as code coverage

and code complexity analysis, which help maintain code standards and identify areas for

improvement.

Peer code review is a process where developers review each other's code to identify bugs,

improve code quality, and share knowledge. It is an effective method to catch issues that

might have been missed during development and to ensure that the codebase adheres to

coding standards and best practices.Reviewers examine the code for readability,

maintainability, adherence to coding conventions, and potential bugs or security

vulnerabilities. Reviewers provide constructive feedback, suggest improvements, and discuss

design decisions or alternative approaches. Code review fosters knowledge sharing among

team members, allowing them to learn from each other and gain a deeper understanding of

the codebase.The review process helps identify patterns and areas for improvement, leading

to better code quality and increased developer expertise over time. Issue triage and resolution

involve managing and resolving reported issues, such as bugs, feature requests, or user

feedback. It ensures that reported issues are addressed promptly and that the software remains

stable and meets user expectations.

Issues are tracked using dedicated tools, such as bug tracking systems, to record and manage

reported problems.Reported issues are reviewed, categorized, and prioritized based on their

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, July-December 2020, Submitted in December 2020, iajesm2014@gmail.com

 Volume-14, Issue-I 241

severity, impact, and urgency. Issues are assigned to developers or teams for resolution, and

their progress is tracked until they are resolved or closed. Developers, testers, and users may

engage in discussions to gather additional information, clarify requirements, or provide

updates on issue resolution progress.

Release management involves planning, coordinating, and executing the process of releasing

new versions or updates of the software. It ensures that releases are well-tested, properly

documented, and deployed smoothly to users. Defining release goals, scope, and timelines,

considering factors like feature readiness, bug fixes, and stakeholder requirements.

Conducting comprehensive testing, including functional testing, compatibility testing, and

performance testing, to ensure the release meets quality standards. Preparing release

documentation, including user guides, installation instructions, and release notes that

highlight changes, bug fixes, and new features. Coordinating the deployment of the release to

production environments and monitoring its performance and stability post-release.

CASE STUDIES: SUCCESSFUL OPEN SOURCE PROJECTS

Linux Kernel:

The Linux Kernel is one of the most successful and influential open-source projects. It is the

core component of the Linux operating system, which powers a significant portion of

computing devices worldwide. The project was initiated by Linus Torvalds in 1991 and has

grown into a global collaborative effort with thousands of contributors.

The success of the Linux Kernel can be attributed to several factors:

➢ Strong Leadership

➢ Community Collaboration

➢ Transparent development Process

➢ Robust Infrastructure

Apache HTTP Server:

The Apache HTTP Server is a widely used web server software and another highly successful

open-source project. It was initially developed in 1995 and has become the most popular web

server software globally. Apache HTTP Server is known for its performance, security, and

flexibility.

The key factors contributing to the success of Apache HTTP Server are:

➢ Community-driven development

➢ Modularity and Extensibility

➢ Stability and Security

➢ Wide Platform Support

Mozilla Firefox: Mozilla Firefox is an open-source web browser developed by the Mozilla

Foundation. It was first released in 2004 and quickly gained popularity as an alternative to

proprietary browsers. Firefox emphasizes user privacy, security, and openness.

The Success of Mozilla Firefox can be attributed to the following factors:

Community Involvement: User-centric approach: Mozilla Firefox focuses on user needs,

emphasizing privacy, security, and customization options, which have resonated with users

seeking alternatives to mainstream browsers.

Standards compliance: Firefox adheres to web standards and supports open web

technologies, enabling a consistent browsing experience across different platforms and

devices.

Add-ons ecosystem: Firefox's add-ons ecosystem allows users to customize their browsing

experience through extensions developed by the community, enhancing the browser's

functionality.

CHALLENGES AND MITIGATION STRATEGIES

1. Scalability and Project Governance:

Challenge: As open-source projects grow in size and popularity, they face challenges related

to scalability and project governance. It becomes increasingly complex to manage

contributions, coordinate development efforts, and make decisions that align with the

project's goals and community consensus.

Mitigation Strategies:

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, July-December 2020, Submitted in December 2020, iajesm2014@gmail.com

 Volume-14, Issue-I 242

➢ Establish Clear Project Governance

➢ Implement Community Guidelines

➢ Embrace modular Architecture

 2. Security and Vulnerability Management

Challenge: Open-source projects can be susceptible to security vulnerabilities due to the

wide adoption and usage of the software. It is crucial to identify and address vulnerabilities

promptly to maintain the project's integrity and protect users.

Mitigation Strategies:

➢ Implement Code Review and Security Audits

➢ Encourage responsible disclosure:

➢ Prompt Patching and Updates

 3. Maintaining Project Sustainability

Challenge: Open-source projects require ongoing maintenance and sustainability to ensure

their long-term viability. Challenges in funding, resource management, and community

engagement can impact project sustainability.

Mitigation Strategies:

➢ Diversify Funding Sources

➢ Foster a Welcoming Community

➢ Provide Clear Roadmaps and Project Vision

CONCLUSION

Summary of Key Findings:
Based on the review of related literature on performance optimization in fiber distributed

data networks (FDDNs), several key findings emerge:

• FDDNs offer significant advantages in terms of high-speed and reliable data transmission.

• Network topologies play a crucial role in FDDN performance, and optimal topologies need

to be identified.

• Efficient bandwidth allocation and resource management strategies are essential for

maximizing FDDN performance.

• Routing protocols, load balancing techniques, and switching architectures impact network

performance and should be optimized.

• Transmission technologies, such as Wavelength Division Multiplexing (WDM), and proper

equipment selection are crucial for optimal FDDN performance.

• Network security and resilience are critical considerations to protect data integrity and

ensure continuous operation.

• Energy efficiency measures and power-saving techniques are important for sustainable

FDDN operations.

• Performance evaluation and measurement metrics are necessary to assess FDDN

performance and compare different optimization approaches.

Future Directions:

Building on the findings from the literature review, several future directions and research

opportunities in FDDN performance optimization can be identified:

• Exploring advanced network topologies, such as hybrid or meshed structures, to enhance

FDDN performance.

• Investigating machine learning and artificial intelligence techniques for intelligent

bandwidth allocation and resource management in FDDNs.

• Developing novel routing protocols and load balancing algorithms specifically designed for

FDDNs.

• Advancing transmission technologies and equipment to support higher data rates and

increased capacity in FDDNs.

• Addressing emerging security challenges, such as protecting against new threats and

vulnerabilities in FDDNs.

• Incorporating renewable energy sources and green networking approaches to further

improve the energy efficiency of FDDNs.

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, July-December 2020, Submitted in December 2020, iajesm2014@gmail.com

 Volume-14, Issue-I 243

REFERENCES

1. "A Survey on Open Source Software Development Processes and Techniques" by

Shivam Kumar Gupta and Sandeep KumarPublished in the International Journal of

Computer Science and Information Security, 2015.

2. "Open Source Software Development Methodology: A Review" by N. H. Narendra

Babu, B. Ramesh, and R. V. S. Satyanarayana, Published in the International Journal of

Computer Applications, 2012.

3. "Empirical Study of Open Source Software Development Models: The Case of Indian

Developers" by M. N. Hoda and S. A. Murugesan, Published in the Journal of Systems

and Software, 2010.

4. "Open Source Software Development Model for Developing Countries: A Case Study of

India" by G. R. Gangadharan and K. C. Mathew, Published in the Proceedings of the

International Conference on Open Source Systems, 2010.

5. "Open Source Software Development: A Case Study of Linux Kernel" by Vishal Sahu

and Jyoti Vyas, Published in the International Journal of Computer Science and Mobile

Computing, 2015.

6. "Open Source Software Development: An Indian Perspective" by B. L. Lekshmi and R.

Jyothi, Published in the Proceedings of the International Conference on Green

Computing and Engineering Technologies, 2013.

7. "Open Source Software Development and Collaboration in India" by K. R. Srivathsan

and S. A. Murugesan, Published in the Proceedings of the International Conference on

Open Source Systems, 2006.

8. "Open Source Software Development in India: A Review" by Y. N. Singh, V. V. Singh,

and S. N. Pandey, Published in the International Journal of Computer Applications,

2011.

9. "Open Source Software Development Practices: A Case Study of the Indian Context" by

S. Thiruvengadam and A. Chaturvedi, Published in the Proceedings of the International

Conference on Information Technology, 2008.

10. "A Comparative Study of Open Source Software Development Models" by S. Saha and

A. Roychoudhury, Published in the International Journal of Computer Applications,

2013.

11. "Open Source Software Development: An Indian Perspective" by A. S. Khamitkar and S.

C. Mehrotra, Published in the International Journal of Computer Science & Engineering

Survey, 2012.

12. "An Analysis of Open Source Software Development in India" by P. K. Garg and G.

Sahoo Published in the International Journal of Computer Applications, 2012.

13. "Exploring the Challenges and Opportunities of Open Source Software Development in

India" by A. B. Singh and N. Chauhan, Published in the International Journal of

Computer Science Issues, 2012.

14. "Open Source Software Development: An Analysis of Its Adoption and Contribution in

India" by N. Chauhan and A. B. Singh, Published in the International Journal of

Advanced Research in Computer Science, 2011.

mailto:iajesm2014@gmail.com

