

International Advance Journal of Engineering, Science and Management (IAJESM)
January-June 2023, Submitted in February 2023, iajesm2014@gmail.com, ISSN -2393-8048

 Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Impact Factor 2023 =6.753

Volume-19, Issue-II 108

Review of Literature on Modeling Software Reliability Growth

from the Perspective of Imperfect Debugging
Jyoti, Former Assistant Professor, Government College Of Women, Bawani Khera, Bhiwani (Haryana)

Email- neer4ualways@gmail.com

Abstract
Due to the fact that OSS is having free of cost access to the tools and technology, teaching

and learning through OSS can be done in a wonderful manner. The gap of digital divide can

be filled with the novel idea of OSS. Reliability measurement is a prime concern in OSS as it

is being updated by many developers constantly. Research is being carried to develop

SRGMs for OSS in order to check its reliability under different environmental conditions.

Reliability of Mozilla Firefox, Apache, Genome etc. can be measured with the help of these

SRGMs. The reliability models that have been proposed so far for OSS can be applied to

reliability growth in particular and not in general. This is because of the reason that T&D

environment is assumed to be different in different SRGMs. With the result, a particular

SRGM is not applicable for any sort of environment. This has increased the need of

formulating generalised framework for OSS.
Keywords: Review of Literature, Modeling Software Reliability, Imperfect Debugging

Introduction
In today’s fast moving life, almost everything is dependent on software systems. Software

systems are developed with the intent to automate various real life functions of the most

intelligent creature of the universe, the mankind. This dependence has increased the scope

and importance of having highly reliable software in no time. The persistent and diligent

research in the development of software systems has led to the innovation of some fabulous

software products that has brought the mankind closer in order to share the experiences

across a global platform. Multipurpose satellites, space shuttles etc. have been launched so as

to forecast the things that are happening in the universe. Attempts are being made to explore

places other than the planet earth for existence of life. However, to conquer such missions,

highly advanced technology with high precision is required. Huge development costs are

incurred by real-time and mission critical systems. On the other hand, high level of risk to

human life is posed by safety critical systems. Thus, there should be no room for errors in the

development of such systems. Even though the software system is created by the most

intelligent creature of the universe, it is never failure free. The failures occur because of the

faults that are manifested in them during their development by the software developers. The

software testing team puts their best effort so as to remove the faults that are present in the

software. However, the testing cannot be performed for long because of the stringent budget

and schedule of the project management. On one hand, the project management wants all the

faults that are residing in the software to be removed by the testing team so as to increase its

reliability. On the other hand, the project management does not want to continue testing for

long and increase the testing costs. Thus, scheduled delivery, cost and reliability are the main

attributes for every software being developed. The main aim of the project management is to

attain these attributes at their best possible values so as to achieve a good image in the

market for long-term profits and survival.

Literature Review

The main aim of the testing process in the software development life cycle is to uncover all

the faults that are lying dormant in the software. Software testing is defined as the process of

executing a software system in its intended environment in order to determine whether or not

the software matches its requirement specification. Dijiskstra (1972), states that software

testing is an effective way to show the presence of underlying bugs in the software and is not

meant to show their absence. Whenever a failure takes place, the fault that is responsible for

it is immediately repaired. The process of observing failure and removing the corresponding

fault indicates that there is an improvement in the reliability of the system. Software

mailto:iajesm2014@gmail.com
mailto:neer4ualways@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
January-June 2023, Submitted in February 2023, iajesm2014@gmail.com, ISSN -2393-8048

 Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Impact Factor 2023 =6.753

Volume-19, Issue-II 109

reliability being one of the most dynamic characteristic of software quality is preferred by

both the users of the software as well as the developers of the software.

There are four types of testing methods viz. performance testing, defect testing, security

testing, and statistical testing. Statistical testing is different from other methods of testing in

the sense that statistical testing is used to measure the reliability of the software rather than

uncovering the faults. It is considered to be the most effective sampling method for

evaluating the reliability of the system and is also known as reliability testing. There are four

stages in assessing the reliability of the software.

Reliability assessment provides both the users and the developers a quantitative measure of

the leftover faults, decisions regarding the software release time, software maintenance in the

operational phase etc. For users, reliability assessment provides a confidence measure in the

quality of the software as well as their acceptability level.

Model proposed by Musa (1975) and the model developed by Musa and Okumoto (1984),

also known as Logarithmic Poisson execution time model are the two most known models

that lie in the category of execution time models. These models differ on the basis of

underlying assumptions on which they are built.

Most of the SRGMs proposed so far, are based on calendar time, as this time component is

more meaningful to the software developers, engineers and to the users of the software. A

vast literature is available on calendar time models. In the year 1979, a pioneering attempt

was done by Goel and Okumoto’s model. The models that were proposed later aimed to

incorporate various different aspects of T&D environment with the relaxation on some

assumptions. Goel and Okumoto’s (1979) model was exponential in nature.

Earlier, in NHPP modelling it was assumed that the failure process could be described by

exponential models due to the uniform operational profiles. However, most of the testing

profiles lack uniformity and thus the assumption of uniformity is not real. The testing

profiles are thus non-uniform because of various different reasons.

Many researchers proposed models exhibiting S-shaped failure curve in order to model non-

uniform testing profile. The S-shaped curve proved to be quite successful in describing the

non-uniformity of the operational profile. A number of S-shaped SRGMs have been

developed by many researchers.

Yamada et al. (1983) was the first to modify the GO model. They described testing as a two

stage process, the fault-detection process and the fault correction process. Thus, the model

proposed by Yamada et al. (1983) is known as Delayed S-shaped model. SRGMs proposed

by Ohba (1984), Bittanti et al. (1988) and Kapur and Garg (1992) are also S- shaped in

nature. However, these SRGMs have same mathematical form but they vary on the basis of

assumptions on which they are built.

Depending on the values of the unknown parameters in the model, S-shaped models exhibit

an important characteristic of describing both exponential and S-shaped growth curves.

Hence are termed as flexible models. This flexibility makes S-shaped SRGMs more

appropriate for real testing environments

 Types of imperfect Debugging

In an imperfect debugging environment, Software Reliability Growth Models can be either

purely imperfect, pure fault generation models while some others may integrate both the

types of imperfect debugging. Goel (1985) first introduced the concept of imperfect

debugging. He implemented it on Jelinski and Moranda model (1972). In these type of

SRGMs, it was assumed that the removal rate of faults per remaining faults tends to decrease

because of imperfect debugging. This is the first type of imperfect debugging phenomenon

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
January-June 2023, Submitted in February 2023, iajesm2014@gmail.com, ISSN -2393-8048

 Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Impact Factor 2023 =6.753

Volume-19, Issue-II 110

 The second type of imperfect debugging phenomenon is related to the error generation.

In this, the fault content by time infinity increases and is usually more than the initial fault

content. The error generation phenomenon was described by Ohba and Chou (1989) in

modelling SRGMs.

It is worth mentioning that during the early stages of research in reliability modelling, no

distinction was made between the two types of imperfect debugging and even the models

incorporating only one type of imperfect debugging phenomenon were simply named as

imperfect debugging models. Thus, earlier a proper insight regarding this topic was not

provided (Xie, 2003). The two types of imperfect debugging were first introduced by Zhang

et al. (2003). The number of failures experienced/removal attempts were used in their

modelling. A fault is generated only when some fault is being removed. Thus, the rate of

generation of new faults is proportional to the rate of original fault removals. It should be

noted that the number of failures that are experienced is not same as the number of fault

removals. The facts related to imperfect debugging phenomenon were clearly illustrated by

Kapur et al. (2006) in their model where they integrated both the types of imperfect

debugging.

Another significant factor that plays a crucial role in evaluating the reliability of the software

is testing effort. Testing effort is defined as the amount of the resources or effort that are

utilized during the fault detection/correction process in a software system. Testing effort is

said to be directly proportional to the reliability achieved. Thus, software is said to obtain

higher reliability if more resources are consumed during the testing process. However, due to

the budget constraints, it is important to strike-off a balance between the resources utilized

and the reliability obtained.

Numerous SRGMs have been proposed by many researchers that have incorporated the

concept of testing effort (Ahmad et al., 2010a; Quadri et al., 2011; Kapur et al., 2012).

Further, a unified model was proposed by Zhang et al. (2014) with testing effort under the

imperfect debugging assumption. A SRGM was proposed by Li et al. (2015) in which the

debugging environment was taken to be imperfect with S-shaped TEF being incorporated in

the model.

Many times it is assumed that during the entire testing period, the parameters of the SRGM

remain smooth. However, it is not always the case. For instance, after analysing the failure

datasets after some days of testing, the management decides that there is a need of some

additional skilled member to join the testing team and some changes are also brought in the

strategy that was previously adopted for testing and even some advanced tools and

techniques are employed for the testing process. These attempts are made in order to speed

up the testing process. So, the parameters of the model before the changes were made will

not be able to describe the testing process as some model parameters may undergo change.

The kinks/jumps that are thus observed in the fault detection rate is termed as the change

point. In the literature of regression, the term two- phase regression or multiple-phase

regression is also used for change-point models. In addition to this, broken-line regression,

switching regression, two-stage least squares or segmented regression is also used (Kapur et

al., 2011a).

For hardware and software reliability, change point models play a very significant role. In

software reliability modelling, it was assumed by most researchers that the fault

detection rate remains constant and each and every fault has an equal probability of

being detected. However, the detection rate of faults depends on testing effort, testing skills,

size of the program and much more. Thus, the fault detection rate is not smooth and there is a

possibility that it can change. It is very significant to incorporate the method of change-point

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
January-June 2023, Submitted in February 2023, iajesm2014@gmail.com, ISSN -2393-8048

 Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Impact Factor 2023 =6.753

Volume-19, Issue-II 111

in order to analyse the reliability growth in the changing testing process. The SRGMs in

which the change point effect is not considered in the estimation of software reliability is not

the true representative of the actual testing environment (Zhao, 1993; Gupta, 2008).

In the process of analysing the change point, the studies that were conducted were related in

estimating the change point position in case of a single change point, finding out the number

of change points that are present and their positions if multiple change points exist and

determining the parameters in case the distribution function between the change point

remains same. Many authors have studied the problem of change point.

The reliability of a software can be assessed accurately with the change point phenomenon.

SRGMs that are formulated by incorporating the change point method are considered to

express the factual software reliability behaviour. As mentioned above, there are chances of

no change point, only one change point and a number of change points depending upon the

testing environment. Initially, Zhao (1993) carried out the studies for analysing the hardware

and software reliability by incorporating the change point method. Later, a number of

researchers proposed numerous SRGMs with the change point concept for measuring and

predicting the software reliability (Chang, 2001; Huang, 2005; Shyur, 2003; Zhao, 1993; Zou,

2003).

SRGMs that have been proposed so far are built with diverse limitations considering

different factors. Fault Reduction factor (FRF) is one of the factors that plays a very

significant role in determining the reliability of the software system. Musa (1975) first

identified the significance of FRF for determining the reliability growth.

In the process of testing, there is often seen some sort of relationship between the faults and

the failures (Musa et al., 1987). When a user observes an unexpected software system

behaviour, the failure is said to have occurred. On the other hand, data defined incorrectly

in the software program or any other incorrect step results in a fault that further causes

failure.

References

1. A. L. Goel, Software reliability models: assumptions, limitations and applicability. IEEE

Trans. Software Engng SE-II, 1411-1423 (1985).

2. P. K. Kapur and R. B. Garg, Optimal software release policies for software reliability

growth models under imperfect debugging. RAIRO 24, 295-305 (1990).

3. P. K. Kapur, Sanjay Agarwala and Said Younes, S-shaped software reliability growth

model with imperfect fault detection. Private communication (1992).

4. S. Bittanti et al., A flexible modelling approach for software reliability growth. In

Software Reliability Modelling and Identification (Ed. S. Bittani), pp. 101-140. Springer,

Berlin (1988).

5. A. L. Goel and K. Okumoto, Time dependent error-detection rate model for software

reliability and other performance measures. IEEE Trans. Reliab. R-28, 206-211 (1979).

6. Z. Jelinski and P. B. Moranda, Software reliability research. In Statistical Computer

Performance Evaluation (Ed. W. Freiberger), pp. 465-497. Academic Press, New York

(1972).

7. T. M. Khoshgoftaar and T. G. Woodcook, Software reliability model selection, a case

study. Proc. Int. Syrup. Software Reliab. Engng, pp. 183-191 (1991).

8. J. D. Musa et al., Software Reliability: Measurement, Prediction, Application. McGraw-

Hill, New York (1987).

9. M. Ohba, Software reliability analysis models. IBM J. Res. Dev. 28, 428-443 (1984).

mailto:iajesm2014@gmail.com

