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ABSTRACT 

It has been recently proved that the redundancy r of any discrete memory less source satisfies 

 NPHr 1 , Where PN is the least likely source letter probability. 

This bound  is achieved only by sources consisting of two letters. We prove a sharper boun if 

the number of source letters is greater than two. Also provided is a new upper bound on r, in 

terms of the two least likely source letter probabilities, which improves on a previous results. 

1. INTRODUCTION 
 Let C = {x1, x2,x3,…….,xn} be a code for source ‘S’ and let n1 n2 n3 …..nN be the 

code word lengths withour the loss of generality we assume that p1 p2 p3 …..pN. The 

Huffman encoding algorithm [1952] defined as the difference between the average code word 

lengths ‘L’ and the entropy H(p1 p2, p3, ……pN) of the source. 
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Capocelli and Santis [1989] who proved that as a function of PN, the redundancy ‘r’ of Huffman 

codes is upper bounded buy 

  NPHr 1         …..1.1 

Where H is the binary entropy function and  

      pppppH  1log1log      ….1.2 

We prove that for N3 the following bound, in terms of the least likely source letter probability, 

holds : 
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where d=01525. This bound is the bset possible expressed only in terms of pN for every pN > 0 

and N3. 

 Prisco and Santis [1995] defined redundancy ‘r’ of a source, whose most and least likely 

source probabilities are respectively pi and pN, is upper bounded by 

6
10086.0 11  pforppr N      …1.4 

    1971.0
6

113219.12 111  pforppHpr N   …1.5 

  2.01971.05609.184 111  pforppHpr N   …1.6 

     3138.02.0125.12 111  pforppHpr N   …1.7 

    
3

13138.033log333 111  pforppHpr N   …1.8 

     6,4505.0
3

1215.01 111  NpforppHpr N  …1.9 

2. Redundancy of Huffman codes: 

Now  we define a function of lease likely source letter probability when N=425 is the form of 

following theorems are te3adious case by case proof indeed we distinguish among all possible 

length vectors of the Huffman codes and then we proceed in the way similar to Prisco and 

Santis. 

Theorem 2.1 

Let S = (P1,P2,P3 P4) be a discrete source and p4=pN be its least likely source letter 

probability .The redundancy of the corresponding Huffman code is upper bounded by 
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where 1708.01  is the unique point in the interval  
5

1,
6

1  for which function 

H(2x,1-4x,x,x) is equal to the function       xxxxH ,
3

21,
3

21,
3

1  . The bound is tight. 

Theorem 2.2 

 Let S = (P1, P2, P3, P4,P5) be a discrete source and P5 = PN be its least likely source letter 

probability. The redundancy of the corresponding Huffman code is upper bounded by 
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   …2.2.1 

where 078184.01  is the unique point in  
9

1,0  for which the function 1+8x-H(1-4x,x,x,x,x) 

is equal to the function  xxxHx ,
6

31,
6

31,
3

1,
3

1
26

13  ; 143815.01   is the unique 

point in  
6

1,
8

1  for which the function 
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9  . The bound is tight. 

3. Latest Upper Bound of Redundancy : 

 We give the least upper bound as a function of least likely source letter probability when 

N=4 & 5. We distinguish among all possible length vectors of Huffman codes and then we 

proceed in a similar way to presco and Sanits and define as 

Theorem 3.1 

 Let S = (P1, P2, P3, P4) be a discrete source  and p4 = px be its least likely source letter 

probability. The redundancy of the corresponding Huffman code is upper bounded by 
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where 1708.01  is the unique point in the interval  
5

1,
6

1  for which the function 1.81059-

H(3x,1-5x,x,x) is equal to the function 
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Theorem 3.2 

 Let S=(P1, P2,P3, P4, P5) be a discrete source and P5 = PN be its least likely source letter 

probability The redundancy of the corresponding Huffman code is upper bounded by 
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 Where 2=0.078184 is the unique point  
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4. Conclusion : - The above result is obtain by a study on minimum Redundancy achived 

by Huffman codes. 
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