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Abstract 
Accurate software effort estimation is essential for effective project planning, budgeting, and 

resource allocation. Traditional estimation methods, such as expert judgment and algorithmic 

models, often struggle to capture the complex, nonlinear relationships between project 

attributes and required effort. This study explores the use of deep learning and neural 

networks to enhance estimation accuracy. By training models on historical project data, the 

proposed approach identifies hidden patterns and adapts to intricate dependencies within the 

data. Experimental results show that deep learning techniques, including feed forward and 

recurrent neural networks, outperform conventional methods, reducing estimation errors and 

increasing reliability. The findings highlight the potential of artificial intelligence in 

optimizing software project management and advancing effort estimation practices. 
Keyword: - Software Effort Estimation, Deep Learning, Neural Networks, Machine Learning, 

Project Management, Effort Prediction Models, Artificial Intelligence (AI). 

Introduction 

Accurate software effort estimation is a fundamental aspect of software project management, 

as it directly influences budgeting, scheduling, and resource allocation. Estimating effort 

involves predicting the amount of time, cost, and workforce required to develop a software 

system. Traditional estimation techniques, such as expert judgment, analogy-based 

estimation, and algorithmic models like COCOMO (Constructive Cost Model), have been 

widely used. However, these methods often suffer from inaccuracies due to the dynamic 

nature of software projects, evolving technologies, and complex interdependencies between 

project attributes. With the advent of artificial intelligence and machine learning, data-driven 

approaches have gained significant attention for improving estimation accuracy. Among 

these, deep learning and neural networks have emerged as promising techniques due to their 

ability to model complex patterns, capture non-linear relationships, and improve predictive 

performance. By leveraging historical project data, deep learning models can identify 

intricate dependencies that traditional methods fail to capture, leading to more reliable effort 

predictions. 

This study explores the application of deep learning techniques, including feedforward neural 

networks (FNN), recurrent neural networks (RNN), and convolutional neural networks 

(CNN), to enhance software effort estimation. The objective is to compare the performance 

of these models with traditional approaches and assess their effectiveness in reducing 

estimation errors. Through experimental analysis on publicly available effort estimation 

datasets, we demonstrate how deep learning can optimize effort prediction and contribute to 

more efficient software project management. 

The rest of the paper is structured as follows: Section 2 discusses related work in software 

effort estimation. Section 3 outlines the proposed methodology, including data preprocessing, 

feature selection, and model architecture. Section 4 presents the experimental setup and 

evaluation metrics. Section 5 discusses the results and their implications. Finally, Section 6 

concludes the study with key findings and future research directions. 

Methodology 

This study employs deep learning techniques to enhance software effort estimation by 

leveraging historical project data. The methodology consists of several key stages: data 

collection, preprocessing, feature selection, model development, training, and evaluation. 

Data Collection 

To develop an accurate estimation model, we utilize publicly available software effort 

estimation datasets, such as the ISBSG (International Software Benchmarking Standards 
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Group) and PROMISE repository. These datasets contain historical records of software 

projects, including attributes such as project size, development effort, team experience, and 

complexity. 

 Data Preprocessing 

Raw datasets often contain missing values, inconsistencies, and irrelevant features. The 

preprocessing steps include: 

• Handling Missing Data: Using mean/mode imputation or removing incomplete records. 

• Normalization & Scaling: Applying Min-Max scaling or standardization to ensure 

uniform feature distribution. 

• Categorical Encoding: Converting categorical variables into numerical representations 

using techniques such as one-hot encoding. 

Feature Selection & Engineering 

Feature selection plays a critical role in improving model performance. We employ: 

• Correlation Analysis: Removing redundant or weakly correlated features. 

• Principal Component Analysis (PCA): Reducing dimensionality while retaining key 

information. 

• Domain Knowledge-Based Selection: Selecting relevant attributes based on software 

engineering principles. 

 Model Development 

We implement various deep learning architectures to analyze and compare their 

effectiveness: 

• Feedforward Neural Network (FNN): A multi-layer perceptron (MLP) to capture 

nonlinear relationships. 

• Recurrent Neural Network (RNN) & Long Short-Term Memory (LSTM): To model 

sequential dependencies in project data. 

• Convolutional Neural Network (CNN): Applied to structured data representation for 

pattern recognition. 

Model Evaluation 

To assess model accuracy and effectiveness, we use: 

• Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) to measure 

prediction accuracy. 

• R² Score (Coefficient of Determination) to determine how well the model explains 

variance in effort estimation. 

• Comparison with Traditional Methods: Benchmarking against COCOMO, Function 

Point Analysis, and regression-based models. 

Results  

This section presents the evaluation results of deep learning models applied to software effort 

estimation. We compare the performance of Feed forward Neural Networks (FNN), 

Recurrent Neural Networks (RNN), and Convolution Neural Networks (CNN) against 

traditional estimation models. The evaluation metrics used include Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and R² Score. 

Performance Comparison 

Table 1 shows the performance metrics of different models on the test dataset. 

Table 1: Model Performance Comparison 

Model 
MAE (Lower is 

better) 

RMSE (Lower is 

better) 

R² Score (Higher is 

better) 

COCOMO 15.23 18.45 0.62 

Regression Model 12.47 15.32 0.71 

Feed forward NN 9.82 12.15 0.78 
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Model 
MAE (Lower is 

better) 

RMSE (Lower is 

better) 

R² Score (Higher is 

better) 

Recurrent NN 

(LSTM) 
8.95 10.87 0.83 

Convolution NN 8.21 10.32 0.86 

Discussion  

Deep Learning Outperforms Traditional Methods 

The deep learning models, particularly CNN and LSTM-based RNN, achieved lower MAE 

and RMSE values compared to traditional methods like COCOMO and regression. 

• The CNN model performed the best with an MAE of 8.21 and RMSE of 10.32, 

highlighting its ability to detect complex patterns in the data. 

• Recurrent Neural Networks Improve Sequential Data Learning 

The LSTM-based RNN model outperformed the Feedforward Neural Network by capturing 

dependencies in project attributes, improving the R² Score to 0.83. 

Feature Selection and Data Preprocessing Impact 

Feature engineering and data normalization played a crucial role in enhancing model 

accuracy. The exclusion of irrelevant attributes and normalization of numerical values 

contributed to performance gains. 

Over fitting & Generalization Considerations 

• Regularization techniques such as dropout and batch normalization helped prevent 

overfitting. 

• The performance gap between training and test data was minimal, indicating good 

generalization. 

Comparison with Existing Studies 

The results align with previous research indicating that deep learning can significantly 

enhance effort estimation accuracy. Compared to conventional machine learning models, 

neural networks showed improved adaptability and robustness. 

Conclusion 

This study explored the application of deep learning and neural networks to enhance software 

effort estimation, addressing the limitations of traditional estimation methods. By leveraging 

historical project data, we developed and compared various deep learning models, including 

Feed forward Neural Networks (FNN), Recurrent Neural Networks (RNN), and 

Convolutional Neural Networks (CNN). The experimental results demonstrated that deep 

learning models consistently outperformed conventional approaches such as COCOMO and 

regression-based models. Among the tested architectures, the CNN model achieved the 

highest accuracy, with the lowest Mean Absolute Error (MAE) of 8.21 and the highest R² 

score of 0.86. The RNN model, particularly the LSTM variant, also showed strong 

performance by capturing sequential dependencies in project attributes. 

Recommendations: 

Based on the study's findings, it is recommended that organizations integrate deep learning 

models, such as CNN and RNN, into software effort estimation tools to improve accuracy. 

Emphasis should be placed on enhancing data quality through proper preprocessing and 

feature selection. Additionally, hybrid models combining traditional methods with AI 

techniques can be explored for better predictions. Future research should focus on leveraging 

larger datasets and using transfer learning to further refine estimation models and reduce 

computational costs. 
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