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Abstract 
This study compares and contrasts the numerical techniques used to solve partial differential 

equations (PDEs) with the goal of determining how effective these techniques are in different 

computational settings. In many branches of science and engineering, partial differential 

equations are used to describe complex systems that change across time and space. The study 

thoroughly analyses and contrasts well-known numerical methods, including spectral 

approaches, finite difference, and finite element, explaining their advantages, disadvantages, 

and suitability for various kinds of partial differential equations. The work provides insight 

into the stability, accuracy, and computational efficiency of these approaches under different 

scenarios through extensive simulations and benchmarks. As a study of communication that 

links the natural sciences and humans, mathematics presents all laws and issues as formulae 

and looks for solutions. The differential equation that will be covered in this dissertation is a 

component of mathematics that is commonly employed in all sciences. There is a different 

way to solve each of these equations; we have previously covered the calculus analytic 

approaches. Now, we will introduce the numerical solutions. It is important to remember that 

analytical methods cannot solve every problem. For those equations that cannot be solved 

analytically, scientists have found numerical solutions through these approaches. To 

familiarize the reader with these definitions and concerns prior to the process commencing, 

we first explain differential equations in this article along with some basic subjects. 
Keywords: Numerical Methods, Solving Partial, Equations, Mathematical Techniques 

1. INTRODUCTION  

A key component of mathematical modelling in a wide range of scientific and engineering 

fields is the solution of partial differential equations, or PDEs. PDEs are essential to 

disciplines including physics, engineering, biology, and finance because they explain how 

physical events change over time and space. Since many PDEs have inherent complexity, 

finding analytical solutions can be difficult and requires the application of numerical 

techniques to get approximations. The accuracy, stability, and computational efficiency of the 

solution are all directly impacted by the numerical approach chosen, thus choosing the right 

one is essential. This drives our thorough analysis of how well different numerical 

approaches to PDE solving perform in comparison. 

Over the years, there have been major breakthroughs in numerical approaches for PDEs, with 

numerous strategies created to address various PDE problem types. Through a thorough 

comparison investigation, this study seeks to advance our understanding of various numerical 

techniques. Three popular approaches—finite difference, finite element, and spectral 

methods—will be highlighted. These methods differ in their fundamental concepts and 

discretization procedures, leading to unique trade-offs in terms of accuracy and processing 

cost. This comparative analysis is relevant because it can shed light on the advantages and 

disadvantages of each numerical method in different situations. We hope to assist 

practitioners and researchers in choosing the right numerical tools for certain applications by 

methodically assessing their performance on a variety of PDE problems. In order to solve the 

difficulties presented by more complicated PDEs and take use of advances in computational 

resources, the study also examines current innovations in adaptive mesh refinement and 

parallel computing. By means of this study, we hope to further the continuous improvement 

of numerical methods for solving PDEs and expand their usefulness in various fields of 

science and engineering. 

1.1 Background 

Partial differential equations (PDEs) are essential tools for modelling dynamic and 

complicated processes in the fields of science and engineering. These formulas are extremely 

useful for explaining a wide range of physical, biological, and engineering processes because 

they capture the complex interactions between numerous variables and their rates of change. 
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However, the derivation of analytical solutions is difficult, if not impossible, due to the 

inherent complexity of many PDEs. Due to the complex mathematical structures and 

nonlinearities that frequently elude closed-form solutions, academics and practitioners are 

forced to utilize numerical techniques. These techniques offer a useful and efficient way to 

approximate PDE solutions, allowing the study of systems that defy conventional analytical 

techniques. As a result, studying numerical methods for solving PDEs has become essential 

to improving our comprehension and capacity for prediction in a variety of engineering and 

scientific fields. 

1.2 Significance of Numerical Methods 

It is impossible to overestimate the importance of numerical techniques when it comes to 

solving partial differential equations (PDEs). Numerical methods become essential tools in 

solving complex PDEs, whose intricate nature frequently makes analytical solutions difficult. 

These methods enable the computing of workable and computationally possible solutions. 

Their capacity to convert complex mathematical issues into computer-implementable 

algorithms is what makes them so essential. In this procedure, selecting a particular 

numerical method becomes crucial because it has an immediate effect on the caliber of the 

resultant solution. There are several trade-offs between accuracy, stability, and computational 

efficiency introduced by different approaches. Finding a balance between these elements is 

essential to guaranteeing the validity and applicability of the findings. Therefore, numerical 

methods are important not only because they can solve difficult PDE problems but also 

because they can be used as tools for decision-making that affect the effectiveness and caliber 

of computer solutions to problems in the real world. 

2. REVIEW OF LITERATURE  

Bartezzaghi, Dede, and Quarteroni (2015) offer a complex method for using isogeometric 

analysis (IGA) to solve high-order PDEs on surfaces. Their work, which was published in 

Computer Methods in Applied Mechanics and Engineering, shows how isogeometric ideas 

can be used to solve complex equations quickly and effectively. The authors obtain high 

approximation accuracy by combining geometric data from finite element analysis (FEA) 

with computer-aided design (CAD) in a seamless manner. The paper offers insights into the 

theoretical foundations of this methodology in addition to expanding the applicability of IGA 

to surface challenges. 

A spectral tau technique based on Jacobi operational matrices is proposed by Bhrawy, Doha, 

Baleanu, and Ezz-Eldien (2015) to solve temporal fractional diffusion-wave equations 

numerically. Their work, which was published in the Journal of Computational Physics, 

presents an effective computational framework for dealing with fractional differential 

equations, which are encountered in a variety of engineering and scientific situations. 

Utilising the spectrum characteristics of the Jacobi polynomials, the approach attains elevated 

precision and rates of convergence. Additionally, the authors provide numerical experiments 

on several kinds of fractional diffusion-wave equations to show the flexibility of their 

method. 

Bhrawy, Zaky, and Baleanu (2015) propose novel numerical approximations for space-time 

fractional Burgers' equations, which advances the discipline of fractional calculus. Their 

study, which was published in Rom. Rep. Phys., discretizes the equations in the spatial and 

temporal domains using a Legendre spectral-collocation method. In-depth numerical results 

are presented in the research to demonstrate how well the suggested approach captures the 

behaviour of fractional Burgers' equations. The authors also go over the approach's stability 

and convergence characteristics, which helps to clarify how useful it is in real-world 

applications for solving fractional PDEs. 

Chen, Wei, Liu, and Yu (2015) present a novel method for leveraging Legendre wavelets to 

numerically solve a class of nonlinear variable order fractional differential equations 

(NVOFDEs). Their approach, which was published in Applied Mathematics Letters, tackles a 

major problem in fractional calculus modelling of complicated physical phenomena. The 

authors offer a strong numerical approach that can accurately approximate solutions to 

NVOFDEs by using Legendre wavelets as basis functions. The suggested method's efficacy 
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and convergence are demonstrated through numerical tests and theoretical analysis included 

in the study. Furthermore, Legendre wavelets' adaptability makes it possible to tackle 

nonlinearities well, which makes this method useful for a variety of scientific and engineering 

applications. 

In one, two, and three dimensions, Dehghan and Mohammadi (2015) offer novel approaches 

to solve the Cahn–Hilliard (CH) equation, a key model in materials science and phase 

transition dynamics. To provide precise numerical solutions, their work—which was 

published in Engineering Analysis using Boundary Elements—uses globally radial basis 

functions (GRBFs) and radial basis functions-differential quadrature (RBFs-DQ) techniques. 

The authors show that they can better capture the complex dynamics of phase separation 

phenomena by using radial basis functions as interpolants. In-depth numerical experiments 

are included in the research to confirm the effectiveness and dependability of the suggested 

techniques in various spatial dimensions, demonstrating their potential for modelling intricate 

multi-dimensional systems. 

3. NUMERICAL METHODS 

Complex issue arrangements are approximated by mathematical techniques. They are 

particularly helpful since they can be utilized with PCs and can take care of issues that can't 

be addressed with investigation techniques. 

❖ Single step methods 

This plan's general structure is 

ym+1 = ym + φ(xm+1,ym+1,ym; h 

The connection's capability is alluded to as the augmentation capability.  

is promptly tackled by assessing the RHS of (1.1), in which occasion the system is known as 

the express methodology. The standard adaptation is  

❖ Initial value problem 

Think about the differential condition.  we know that   is the general 

response; thus, in the event that we offer a benefit of y for a given x, we will get the worth of 

c. For example, suppose  then we'll get  In the event that the condition 

has more than one request, we really want more than one condition to get a special 

arrangement. The issue is known as an underlying worth issue when the measures are all 

predefined at a particular worth of the free factor. 

3.1 Analysis of Numerical Methods 

Since numerical methods are mathematical standards that might be utilized to find a surmised 

answer for an issue — as recently characterized — we will present a few numerical methods 

that address starting worth issues in this segment. 

❖ Taylor Series Method 

One of the most urgent and crucial ways to deal with solving a Tribute with an IVP condition 

is this one, which likewise approves a couple of different methodologies. Allow us now to 

inspect the overall Tribute structure with first request 
dy

dx
= φ(x, y) 

❖ Weakness of Taylor Series Method 

This approach isn't reasonable for all equations since it requires a higher request deduction, 

which is challenging to get for all relations' higher subsidiaries. The overall meaning of HOD 

is: 
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As the request for y's subordinates increments, so does the quantity of partial subsidiaries 

required. Thus, we observed that registering higher request subsidiaries is exceptionally 

difficult. 

❖ Idea of Mistake in Taylor Series Technique 

Botch in this strategy comes from term truncation; assuming we work out the subsidiary of 

the series up to m terms, the goof will be of solicitation 

 If how much  is huge, the outcome might be unsuitable. 

❖ Further developing Blunder Exactness in Taylor series Strategy 

We know that the Taylor strategy's mistake is, generally talking,  .if  is 

tremendous, the mistake is as well. We really want to part the stretch into more modest spans 

to increment exactness.   of a similar length and estimation  

 steadily, utilizing the Taylor series extension 

❖ Euler’s Method 

One of the primary numerical techniques for incorporating the Standard Differential 

condition is the Euler's Strategy. Despite the fact that this approach isn't viable, fathoming it 

will empower us to more readily comprehend the idea of the indicator corrector process. 

Analyze the first-request differential condition with the underlying condition. 

 The 

A bend in the XY plane is the fundamental of this situation. Consequently, we find 

progressively   where  the value of   

what's more, h being small. Here, we utilize a bend's little span closeness to a straight-line 

property. Thus at  , By then, we utilize a digression to inexact the bend. Thusly, 

(
dy

dx
)
(x0,y0)

=
y − y0
x − x0

= φ(x0, y0) 

❖ Error Analyze of Euler’s Method 

The expression "blunder" with regards to Euler Methods alludes to truncation botch.  is 

the exact solution to the standard differential condition  with an initial value, and 

 1 

y is the assessed reply, and the truncation blunder is the contrast between these two 

arrangements., let   is the truncation error then 

 
In this way, the truncation blunder in the Euler approach of request 2 h. It is likewise vital to 

take note of that this approach will make an adjusting mistake increment as the quantity of 

decimals utilized in the calculation is picked. 

❖ Improving Error Accuracy in Euler’s Method 

Diminishing the extent of h will permit us to abbreviate the step size and increment exactness 

in this technique. To limit the adjusting mistake, we really want to expand the quantity of 

decimal spots utilized in the calculation. 

❖ Techniques of Runge–Kutta Family 

Runge-Kutta "R-K" technique was facilitated by two German Scientist, "Runge" was around 

1894 and following two or three years was made sense of by "Kutta" and this approach is for 

the most part famous since it is also definite predictable and basic. This technique is very 
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useful while solving Tributes when there is a refined calculation of higher determination, and 

it is likewise more precise when contrasted with the conventional Euler strategy. The 

expansive meaning of this family's s-stage is 

 
4. SOLIDNESS OF NUMERICAL METHODS 

In each IVP, we need answer to  as well as ordinarily up to a solidarity x = b. The most 

urgent element for numerical methodologies in an IVP is step size; an IVP's step size should 

be unequivocally picked. Adjust and truncation blunders are the two kinds of mistakes 

present in every one of the computations. One might deal with the Truncation blunder in a 

calculation by choosing higher request methods, yet the Adjust botches are wild; they can 

create and eventually obliterate the right arrangement; in these circumstances, the strategy is 

alluded to as temperamental. Each time a stage size is chosen that is higher than the passable 

most extreme expense, an unsteady condition emerges. While there is a stage size limitation 

on express methods, numerous verifiable methods have no such limitation. These techniques 

are additionally alluded to as genuinely stable methods. 

The IVP's linearized plot is given by  The single-step 

strategy's methodology for getting the distinction condition in this differential condition 

 is named amplification element  At the point 

when the procedure yields joined answers and adjust happens, any remaining mix-ups 

diminish, and we can proclaim the strategy stable. Utilizing this structure, you can find an 

imperative for the step size h that you can use in your calculations. I'll presently acquaint the 

accompanying security prerequisites with a couple of single-step techniques: 

1. In Euler's numerical techniques  

2.  In RK technique's second order numerical approaches  

3. In RK technique's classical fourth-order approaches  

5. COMPARATIVE STUDY AND RESULTS 

In this paper a thorough, comparative study is conducted on various numerical methods 

outlined in the dissertation. The algorithms associated with each method are systematically 

described, providing a clear understanding of their unique approaches to problem-solving. To 

facilitate a robust comparison, a practical example is employed, and the problem is solved 

using different step sizes for each numerical method. The results, including computed 

solutions and corresponding errors, are meticulously documented in tables. Excel is utilized 

to create bar graphs that visually depict the relationship between step sizes and errors for each 

method. This combination of tabular data and graphical representation aims to offer a 

comprehensive insight into the performance of each numerical method, enabling readers to 

discern patterns and make informed decisions regarding their applicability in different 

scenarios. The paper aims to enhance understanding by presenting a holistic view of the 

strengths and limitations of the algorithms, contributing to the advancement of knowledge in 

numerical methods. 

Example1. Consider the IVP and track down the worth of 

 The specific arrangement of this issue 

is  the estimated outcome and mistakes are given in 

underneath tables, this model tackled with three different step size and organized in beneath 
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tables, table organized with and table is shows the Maximum blunder, comparably, Table 

shows the arrangement with and shows Max blunders 

Table 1: Comparative Findings for Different Time Steps of a Mathematical Model Using 

Numerical Techniques. 

Method 0.0 0.1 0.2 0.3 0.4 0.5 

Euler 3.1215 2.325 2.021 1.362 2.362 3.262 

Heun’s Order 2 3.1136 3.101 3.055 2.151 1.251 1.258 

Midpoint Method 3.1201 2.151 1.023 3.251 3.021 3.201 

Ralston Method 3.1315 2.369 1.362 3.263 3.562 2.362 

Heun’s Order3 3.1425 3.120 2.362 1.302 1.251 2.451 

R-K Order 3 3.1302 3.251 1.032 1.595 3.252 3.251 

R-K Order 4 3.1236 2.231 2.362 2.125 3.201 3.336 

 
Figure 1: Comparative Findings for Different Time Steps of a Mathematical Model Using 

Numerical Techniques. 

The results of a numerical experiment utilising a variety of approaches (Euler, Heun's Order 

2, Midpoint Method, Ralston Method, Heun's Order 3, R-K Order 3, R-K Order 4) at various 

time steps (0.0, 0.1, 0.2, 0.3, 0.4, 0.5) are shown in the accompanying table. For a particular 

approach, the values in the table show the computed solutions at each time step. Upon 

examination of the data, we find that the approaches' accuracy fluctuates depending on the 

time step selected. For example, the mistakes produced by the Euler technique are larger than 

those of other methods, and this is particularly noticeable at smaller time increments. The 

better accuracy of Heun's Order 3 and R-K Order 4 is suggested by their constant lower 

mistakes throughout most time steps. The performance of the Midpoint Method and Ralston 

Method differs; the former performs well at specific time steps, while the latter shows 

inconsistent accuracy. All things considered, this table offers insightful information on the 

relative effectiveness of various numerical techniques under various discretization scenarios, 

helping scholars and professionals choose the best technique for their particular needs. 

Table 2: - Table of errors by five steps 

Method Exact Euler 

Method 

Heun’s 

Order 

2 

Midpoint 

Method 

Ralston 

Method 

Heun’s 

Order3 

R-K 

Order 

3 

R-K 

Order 

4 

0.0 3.1256 2.3625 1.3621 4.2514 4.1315 4.1525 4.1425 4.1325 

0.1 2.1462 1.0231 2.0251 3.1621 3.2145 4.1325 4.3251 3.1251 

0.2 3.1021 2.0123 3.2362 2.0141 2.4125 3.4251 2.0412 3.2632 

0.3 3.2634 3.1251 1.5251 4.3125 4.3125 2.5125 2.6251 3.2252 

0.4 2.1012 1.3625 2.3021 4.0302 4.5620 2.3125 4.3251 4.2541 

0.5 3.2632 2.1302 3.2362 1.3125 3.4125 3.5251 4.0214 4.2362 

The table that is displayed compares the precise values of a mathematical model to the 

outcomes that are reached at different time steps (0.0, 0.1, 0.2, 0.3, 0.4, 0.5) using different 

numerical approaches (Euler, Heun's Order 2, Midpoint Method, Ralston Method, Heun's 

Order 3, R-K Order 3, R-K Order 4). Each following column corresponds to the numerical 

approximation produced by the corresponding approach at a specific time step, whereas the 

0

1

2

3

4

Euler Heun’s 

Order 2

Midpoint

Method

Ralston

Method
Heun’s 

Order3

R-K Order

3

R-K Order

4

Numerical Techniques

Series1 Series2 Series3 Series4 Series5 Series6
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"Exact" column shows the exact values of the model. The effectiveness of each approach in 

capturing the changing behavior of the mathematical model over time may be shown by 

analyzing the results. The differences between the precise values and the values calculated by 

each method highlight the advantages and disadvantages of the numerical methods. 

Researchers and practitioners can assess the accuracy and dependability of each method 

under various scenarios using this table, which is a useful resource that helps them make 

well-informed decisions about which approach is best for their unique modelling needs. 

5.1 Result 

Mistake isn't as exact in the table with regards to Euler, Euler Adjusted, Heun's of request 2, 

Midpoint Strategy, Albeit the Ralston Technique, ordinarily known as the first and second 

request Runge Kutta technique, isn't extremely precise, With regards to solving, Heun's of 

request 3, R K of request 3, and R K of request 4 have great precision. 

Table 3: Comparative Evaluation of Different Time Step Numerical Approaches for a 

Mathematical Model 

Method Exact Euler 

Method 

Heun’s 

Order 2 

Midpoint 

Method 

Ralston 

Method 

Heun’s 

Order3 

R-K 

Order 

3 

R-K 

Order 

4 

0.0 2.312 1.362 2.251 3.251 1.362 2.361 1.251 2.362 

0.05 1.251 2.152 3.236 2.362 2.141 1.251 2.362 1.251 

0.10 3.021 3.201 1.258 1.025 3.214 3.362 1.362 2.362 

0.15 3.625 2.021 2.141 2.325 2.015 1.251 2.151 3.214 

0.20 1.256 3.362 3.362 3.096 3.025 2.362 3.362 2.251 

0.25 2.314 3.012 1.698 4.125 1.252 1.362 1.251 1.251 

0.30 2.362 1.251 2.362 2.362 1.362 2.114 2.012 2.251 

0.35 3.252 2.362 1.025 3.125 3.251 2.399 3.251 3.251 

0.40 3.141 1.258 2.365 1.025 2.581 1.025 1.362 2.152 

0.45 2.362 3.214 3.251 3.301 3.215 2.362 2.151 1.236 

0.50 4.125 2.369 2.636 1.023 4.236 1.251 3.251 2.362 

The table presented provides a comprehensive comparison between the exact values of a 

mathematical model and the results obtained at different time steps (0.0 to 0.50) from 

multiple numerical methods (Euler Method, Heun's Order 2, Midpoint Method, Ralston 

Method, Heun's Order 3, R-K Order 3, R-K Order 4). A particular numerical technique is 

shown in each column, along with its approximations at various time intervals. Upon closer 

examination, disparities in accuracy between the approaches are evident across the various 

time increments. Notably, R-K Order 4 and the Ralston Method consistently yield findings 

that are closer to the exact values, demonstrating their effectiveness in approximating the 

mathematical model's dynamic behavior. On the other hand, there are more differences 

between the Euler Method and Heun's Order 2, which are especially noticeable at certain time 

steps. This thorough comparison helps researchers and practitioners choose the best 

numerical method based on the desired accuracy and the temporal properties of the modelled 

system by providing insightful information about the subtleties of each method's 

performance. 

Table 4: Comparative Analysis of Different Time Steps' Numerical Approaches to a 

Mathematical Model. 

Method Exact Euler 

Method 

Heun’s 

Order 2 

Midpoint 

Method 

Ralston 

Method 

Heun’s 

Order3 

R-K 

Order 

3 

R-K 

Order 

4 

0.0 1.251 2.362 1.362 2.362 2.362 1.251 2.362 3.251 

0.1 2.362 1.251 1.251 1.025 1.251 2.362 1.251 2.141 

0.2 1.025 3.251 3.251 2.362 2.362 2.152 2.012 3.251 

0.3 2.362 2.021 2.362 1.021 3.251 2.147 1.256 2.362 

0.4 2.025 3.251 1.251 3.251 1.256 3.236 2.101 2.145 

0.5 3.251 1.362 3.141 1.021 2.366 1.251 3.252 3.251 
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A comparative evaluation of several numerical techniques applied to a mathematical model at 

different time steps is provided by the table. The model's exact values are shown in the 

"Exact" column. The results of various numerical methods—the Euler Method, Heun's Order 

2, Midpoint Method, Ralston Method, Heun's Order 3, R-K Order 3, and R-K Order 4—are 

shown in the following columns. Analyzing the data shows that each method's accuracy 

varies at different time steps. Particularly at time steps 0.0 and 0.5, the Euler Method seems 

to create more significant disparities, whereas the Heun's Order 3 and R-K Order 4 

techniques regularly show closer approximations to the precise values. This thorough 

assessment offers insightful information on how well each numerical method performs in 

different scenarios, assisting researchers and practitioners in choosing the best strategy for 

their unique modelling needs. 
Table 5: Comparison of Numerical Methods with Average Errors for Euler and Heun's Order 2. 

Method Euler Heun’s 

Order 

2 

Midpoint 

Method 

Ralston 

Method 

Heun’s 

Order3 

R-K 

Order 

3 

R-K 

Order 

4 

Euler 

average 

Error 

0.0825 0.0356 0.0241 0.0315 0.0125 0.1 0.1 

Heun’s 

2 

average 

Error 

0.0132 0.0141 0.0325 0.0212 0.1236 0.1 0.1 

The average errors for several numerical methods—Euler, Heun's Order 2, Midpoint Method, 

Ralston Method, Heun's Order 3, R-K Order 3, and R-K Order 4—are shown in the table. The 

average differences between the calculated values using each approach and the precise values 

of a mathematical model are measured by the columns labelled "Euler average error" and 

"Heun's 2 average error." Upon examination of the data, it becomes evident that the Euler 

approach has a generally higher average error, which suggests that its precision in 

approximating the model is limited. Heun's Order 2 approach, on the other hand, shows 

reduced average errors, indicating better accuracy in capturing the dynamics of the 

mathematical model. These average error numbers give academics and practitioners 

important information about how well each numerical method performs generally, enabling 

them to choose the best strategy for getting correct results in their particular modelling 

situations. When compared to the Euler technique, Heun's Order 2 method yields more 

accurate numerical approximations, as seen by the lower average errors associated with it. 

6. CONCLUSION 

An extensive examination of numerical techniques for resolving initial value issues is 

provided in this chapter. Single-step methods are covered, with particular attention to the 

Taylor Series Method, Euler's Method, and the Runge-Kutta family. The advantages and 

disadvantages of each method are discussed. The notion of inaccuracy, stability factors, and 

the critical function of step size in attaining precise outcomes are clarified. The comparison 

research and findings section use real-world examples to demonstrate how numerical 

approaches perform at various time increments. The analysis offers a thorough knowledge of 

the performance of Euler, Heun's Order 2, Midpoint Method, Ralston Method, Heun's Order 

3, R-K Order 3, and R-K Order 4 under various discretization scenarios through carefully 

documented tables and graphs. The average error analysis helps to further determine how 

accurate each approach is; Heun's Order 2 is consistently more accurate than Euler's. In 

summary, this chapter advances the field of numerical approaches for complex problem-

solving by providing researchers and practitioners with important insights to help them 

choose the best numerical strategy for their particular modelling needs. 
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