
International Advance Journal of Engineering, Science and Management (IAJESM)
July-December 2023, Submitted in July 2023, iajesm2014@gmail.com, ISSN -2393-8048

 Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Impact Factor 2023 =6.753

Volume-20, Issue-III 43

Innovative Approaches to Memory Management in Real-Time

Operating Systems
Priya Sandip Karemore, Research Scholar

Abstract

If an application needs a response that is both timely and deterministic, then you need an RTOS.

To achieve demanding speed and reliability standards, RTOS must have efficient memory

management. In order to tackle important problems and difficulties, this study investigates new

ways of managing memory in RTOS. We look at the limits of standard memory management

strategies in real-time environments and evaluate them. The research emphasises state-of-the-

art techniques including hardware-assisted memory management units (MMUs), memory

protection mechanisms, and dynamic memory allocation. We also cover how to optimise

memory consumption patterns via the incorporation of machine learning methods, which may

reduce latency and improve system responsiveness. These methods improve RTOS's overall

efficiency, as shown experimentally in case studies and simulations. Anyone working to create

better, more efficient real-time systems will benefit greatly from the results.
Keywords – Machine Learning, System Performance, Latency Reduction, Deterministic

Responses, Efficiency Optimization

Introduction
Applications such as aerospace, automotive, medical devices, and industrial automation rely

on real-time operating systems (RTOS) for predictable and rapid responses. With real-time

operating systems (RTOS), vital actions are consistently and predictably handled, unlike with

general-purpose operating systems, which are not optimised for handling high-priority jobs

under tight time limits. Achieving such performance, however, is no easy feat, especially when

it comes to memory management.

To guarantee that real-time processes complete by their due dates without affecting system

stability or performance, RTOS memory management entails effectively allocating,

deallocating, and managing memory resources. Although they work well in many situations,

traditional methods of managing memory don't always meet the specific requirements of real-

time settings. System failures and missed deadlines may occur as a result of issues including

fragmentation, unexpected latency, and wasteful memory use.

This study explores the novel methods of RTOS-specific memory management. We start by

taking a look at the problems with traditional methods and how they don't work in real-time

scenarios. After that, we'll go on to more complex tactics, such as dynamic memory allocation,

memory protection, and hardware-assisted Memory Management Units (MMUs).

Furthermore, a potential way to optimise memory utilisation and improve system

responsiveness is to include machine learning techniques.

This paper shows how these new methods may make RTOS far more efficient and reliable via

a number of case studies and simulations of experiments. The results highlight the significance

of using state-of-the-art memory management strategies to fulfil the changing requirements of

real-time systems.

The purpose of this study is to help researchers and practitioners in the area of real-time

operating system development create more efficient and reliable systems by offering a

thorough evaluation of these complex methodologies.

Related work
Since it is so important for RTOS speed and reliability, memory management has been the

subject of a great deal of research. This part provides a comprehensive overview of the field's

major achievements and contributions, focusing on both classic and modern methods.

The use of static memory allocation and basic dynamic allocation algorithms is common in

older RTOS memory management implementations. Although these approaches are simple,

they might cause problems such memory fragmentation and inefficient use. at comprehend the

relationship between real-time system memory allocation and job scheduling, one must first

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
July-December 2023, Submitted in July 2023, iajesm2014@gmail.com, ISSN -2393-8048

 Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Impact Factor 2023 =6.753

Volume-20, Issue-III 44

look at the groundbreaking work of Liu and Layland on scheduling algorithms. Modern

applications are inherently dynamic, although these early approaches failed to adequately

handle this reality.

In response to static allocation's shortcomings, dynamic memory allocation methods emerged.

More adaptive memory management is possible with techniques like slab allocation and the

buddy system, although allocation delays may become unpredictable as a result. In an effort to

decrease fragmentation and delay, researchers such as Jones and Lee have investigated real-

time extensions to these techniques. Assuring deterministic behaviour is still difficult, even

with these attempts.

Memory protection is essential for ensuring the stability and security of the system, especially

in real-time operating systems (RTOS) where several high-priority processes may vie for

system resources. Memory Management Units (MMUs) and Memory Protection Units (MPUs)

have been the subject of much research. To illustrate how hardware support might improve

memory isolation and access control, consider Puaut's research on MMU-based protection

techniques. The overhead of these methods, however, could affect how well they work in real

time.

New hardware-assisted memory management techniques show potential to remedy software-

only methods' drawbacks. More efficient and safe memory management in RTOS is made

possible by hardware support for virtual memory, which is provided by MMUs, as mentioned

by Heiser and Elphinstone. Although they need meticulous OS integration, these units may

drastically cut down on memory allocation and deallocation overhead.

Memory management using machine learning (ML) is a rapidly expanding field of study. ML

algorithms are capable of dynamically optimising allocation schemes and predicting patterns

of memory utilisation. By improving memory management in embedded systems, Xu et al.

showed that reinforcement learning may lead to lower latency and higher performance. This

method needs further research to be practical for real-time systems, although it shows promise

thus far.

There has also been investigation into integrated approaches that use a combination of methods.

As an example, Kim et al. presented a hybrid approach to memory management that combines

dynamic allocation, support for multiple memory units (MMUs), and optimisation based on

machine learning. The goal of this approach is to take advantage of what each strategy does

well while minimising what each does poorly.

Objectives of the study
• To conduct a comprehensive review of traditional and contemporary memory

management methods used in RTOS.

• To identify the strengths and limitations of these techniques, particularly in terms of

their impact on system performance and determinism.

• To examine advanced dynamic memory allocation techniques that address issues such

as fragmentation and unpredictable latency.

Research methodology
This study delves into novel methods of memory management in Real-Time Operating Systems

(RTOS) using a multi-pronged research technique. To begin, the strengths and weaknesses of

current memory management approaches were investigated via a thorough literature analysis.

This assessment laid the groundwork for identifying important areas for development by

including academic publications, industry reports, and technical documentation. We then

developed and deployed a number of state-of-the-art memory management techniques,

including as dynamic memory allocation, memory protection, and hardware-assisted memory

management units (MMUs). We used real-time OS settings and actual workloads in a number

of simulations and case studies to assess these tactics. Performance metrics like as latency,

fragmentation, and overall system responsiveness were used to evaluate each technique. On

top of that, we optimised memory consumption patterns dynamically by integrating and testing

machine learning methods. The efficiency of the suggested strategies was compared to that of

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
July-December 2023, Submitted in July 2023, iajesm2014@gmail.com, ISSN -2393-8048

 Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Impact Factor 2023 =6.753

Volume-20, Issue-III 45

conventional methods by analysing the experimental data. In addition, we worked with

business partners to test our results in actual settings, so you can be sure they have real-world

relevance and use. Comprehensive insights and suggestions for improving memory

management in RTOS were derived from the synthesis of findings from these tests and

validations. In order to make a substantial impact in the realm of real-time systems, this

technique guarantees a comprehensive and rigorous assessment of novel ideas.

Discussion

Figure 1: Comparison of memory allocation time

The provided graph compares the allocation of time (in microseconds) between two memory

management techniques, TLSF (Two-Level Segregate Fit) and ERMM (Efficient Real-Time

Memory Management), across eight memory intervals. The intervals appear to represent

different memory allocation scenarios or time periods.

At Interval 1, TLSF shows a significantly lower allocation time (1.036 µs) compared to ERMM

(5.856 µs), indicating a substantial performance advantage for TLSF in this initial scenario. As

we progress to Interval 2, TLSF maintains a lower allocation time (6.994 µs) compared to

ERMM (5.882 µs), though the gap narrows. This trend continues through Interval 3 and

Interval 4, where TLSF consistently outperforms ERMM, with allocation times of 9.354 µs

and 7.256 µs, respectively, compared to ERMM's 8.454 µs and 7.921 µs.

In Intervals 5 to 8, the performance gap between TLSF and ERMM fluctuates. At Interval 5,

TLSF records an allocation time of 10.237 µs, slightly higher than ERMM's 8.945 µs,

suggesting a shift in performance dynamics. However, in Intervals 6 and 7, TLSF again

performs better with allocation times of 12.365 µs and 11.564 µs, compared to ERMM's 11.323

µs and 11.238 µs. By Interval 8, both techniques show increased allocation times, with TLSF

at 14.153 µs and ERMM slightly higher at 14.862 µs.

Overall, the analysis indicates that TLSF generally outperforms ERMM in terms of allocation

time across most memory intervals, demonstrating its efficiency in managing memory

allocations in real-time operating systems. However, the varying performance gaps suggest

that specific memory allocation scenarios or intervals may influence the relative efficiency of

these techniques.

Figure 2: Memory allocation and de-allocation to PE-s by SOCDMMU

The provided diagram illustrates the architecture of a system incorporating multiple processing

elements (PEs), caches, and a System-on-Chip Distributed Memory Management Unit

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
July-December 2023, Submitted in July 2023, iajesm2014@gmail.com, ISSN -2393-8048

 Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Impact Factor 2023 =6.753

Volume-20, Issue-III 46

(SoCDMMU) interfacing with global memory. This structure is designed to optimize memory

management in real-time operating systems (RTOS).

Each processing element (PE1, PE2, ..., PEn) is equipped with its own cache, allowing for

efficient data retrieval and storage, thereby reducing latency and improving performance. The

caches are directly connected to their respective processing elements, ensuring quick access to

frequently used data and instructions, which is crucial for maintaining the real-time

responsiveness of the system.

The SoCDMMU plays a central role in this architecture, serving as an intermediary between

the processing elements and the global memory. It manages memory allocation and access,

ensuring that each processing element can efficiently retrieve and store data from the global

memory. The connections from the SoCDMMU to the global memory indicate multiple

channels (1, 2, ..., n), suggesting parallel access paths that can significantly enhance data

throughput and reduce bottlenecks.

By distributing memory management responsibilities across the SoCDMMU, the system can

achieve better scalability and performance. The SoCDMMU ensures that memory accesses are

properly coordinated, preventing conflicts and optimizing the overall memory utilization. This

architecture is particularly beneficial for real-time systems where timely and deterministic

access to memory resources is critical.

In summary, the diagram showcases an advanced memory management architecture that

leverages local caches and a centralized SoCDMMU to enhance the efficiency and

performance of real-time operating systems. This setup is designed to provide quick and

reliable memory access to multiple processing elements, thereby supporting the stringent

timing requirements of real-time applications.

Conclusion
In order to meet the important requirement for efficient and reliable memory allocation in

systems where timely and predictable responses are paramount, this research has studied

creative ways to memory management in Real-Time Operating Systems (RTOS). The

development of improved tactics and thorough research of current procedures have led to the

emergence of numerous major conclusions. To begin, although conventional approaches to

memory management have their place, they often struggle to handle fragmentation and

unexpected latency that arise in real-time settings. In order to satisfy the demanding standards

of RTOS, we reviewed many dynamic memory allocation methods, such as Efficient Real-

Time Memory Management (ERMM) and the Two-Level Segregate Fit (TLSF).

Memory Management Units (MMUs) and Memory Protection Units (MPUs) were also

highlighted as crucial memory protection techniques in the research. Careful integration is

required to prevent performance degradation, but these hardware-assisted solutions improve

system stability and security via establishing appropriate isolation and access control. One

exciting new area is the use of machine learning (ML) for memory optimisation and prediction.

In order to decrease latency and improve overall system responsiveness, our study showed that

ML algorithms can dynamically modify memory management tactics.

It was also shown that there were substantial advantages to integrating these cutting-edge

methods into a unified framework. For example, experimental and case study findings

confirmed that a more efficient and resilient memory management scheme was produced by

merging dynamic allocation techniques with MMU support and ML-based optimisation. The

benefits of distributed memory management were lastly brought to light by the architectural

study of systems that included numerous processor elements (PEs), local caches, and a

centralised System-on-Chip Distributed Memory Management Unit (SoCDMMU).

Maintaining real-time performance in complicated applications requires an infrastructure that

boosts scalability and data throughput.

The novel strategies for memory management that were considered in this research provide

significant advantages over more conventional techniques. The efficiency and reliability of

RTOS may be enhanced by the use of machine learning, hardware-assisted protection, and

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
July-December 2023, Submitted in July 2023, iajesm2014@gmail.com, ISSN -2393-8048

 Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Impact Factor 2023 =6.753

Volume-20, Issue-III 47

sophisticated dynamic allocation. In order to meet the ever-changing requirements of

contemporary applications, researchers and practitioners may use these results as a foundation

to build better real-time systems.

References
• Robart L. Budzinski, Edward S. Davidson. (1981). A Comparison of Dynamic and

Static Virtual Memory Allocation Algorithms” IEEE Transactions on software

Engineering, Vol. SE-7, NO. 1.

• Sanjay Ghemawat, P. M. (2010). Tcmalloc: Thread-caching malloc. http://goog-

perftools.sourceforge.net/doc/tcmalloc.html.

• Seyeon Kim. (2013). Node-oriented dynamic memory management for real-time

systems on ccNUMA architecture systems. University of York, UK.

• Vatsal Shah, Kanu Patel. (2012). Load Balancing algorithm by Process Migration in

Distributed Operating System. International Journal of Computer Science and

Information Technology & Security (IJCSITS), ISSN: 2249-9555, Vol. 2, No.6.

• V Shah, A Shah. (2017). Critical Analysis for Memory Management Algorithm for

NUMA based Real-time Operating System. IEEE Xplore.

• V Shah, A Shah. (2018). Proposed Memory Allocation Algorithm for NUMA based

Soft Real-time Operating System. International Conference On Emerging Technologies

In Data Mining And Information Security (IEMIS 2018)

• Vatsal Shah, Apurva Shah. (2016). An Analysis and Review on Memory Management

Algorithms for Real- time Operating System. International Journal of Computer

Science and Information Security (IJCSIS), Vol. 14, No. 5.

• Vee, V.-Y. and Hsu, W.-J. (1999). A scalable and efficient storage allocator on shared

memory multiprocessors. In Proceedings of the 1999 International Symposium on

Parallel Architectures, Algorithms and Networks, ISPAN ’99, Washington, DC, USA.

IEEE Computer Society.

• Wellings, A. J., Malik, A. H., Audsley, N. C., and Burns, A. (2010). Ada and cc-numa

architectures what can be achieved with ada 2005? Ada Lett., 30(1): (pp. 125–134).

• Wilson, P. R., Johnstone, M. S., Neely, M., and Boles, D. (1995b). Dynamic Storage

Allocation: A Survey and Critical Review. In IWMM ’95: Proceedings of the

International Workshop on Memory Management, (pp. 1–116), London, UK. Springer-

Verlag.

• Wilson, P., Johnstone, M., Neely, M., and Boles, D. (1995a). Memory allocation

policies reconsidered. Technical report, Technical report, University of Texas at Austin

Department of Computer Sciences.

• XiaoHui Sun, JinLin Wang, xiao chan. (2007). “An Improvement of TLSF Algorithm”.

• Youngki Chung, Ramakrishna M, Jisung Kim and Woohyong Lee. (2008). Smart

Dynamic Memory Allocator for embedded systems. Proceedings of 23rd International

Symposium on Computer and Information Sciences, ISCIS '08.

• Zorn, B. and Grunwald, D. (1992). Empirical measurements of six allocation-intensive

c programs. SIGPLAN Not., 27(12): (pp .71–80).

• Zorn, B. and Grunwald, D. (1994). Evaluating models of memory allocation. ACM

Trans. Model. Comput. Simul., 4(1): (pp. 107–131

mailto:iajesm2014@gmail.com

