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Abstract 
The theory of random graphs deals with asymptotic properties of graphs equipped with a 

certain probability distribution; for example, it studies how the component structure of a 

uniform random graph evolves as the number of edges increases. Since the foundation of the 

theory of random graphs by Erdos and R ˝ enyi five ´ decades ago, various random graph 

models have been introduced and studied. Graph theory has meanwhile found its way into 

other sciences as a rich source of models describing fundamental aspects of a broad range of 

complex phenomena. This article is a gentle introduction to the theory of random graphs and 

its recent developments (with focus on the phase transition and critical phenomena, a 

favourite topic of the first author) and applications. This is an extended version of the article 

entitled “Random Graphs: from Nature to Society” published in Seoul Intelligencer, a special 

issue of the Mathematical Intelligencer, on the occasion of International Congress of 

Mathematicians in Seoul in 2014. 
Keywords: Random graph, theory, application 

Introduction:  

Random graph inference is an active, interdisciplinary area of current research, bridging 

combinatorics, probability, statistical theory, and machine learning, as well as a wide 

spectrum of application domains from neuroscience to sociology. Statistical inference on 

random graphs and networks, in particular, has witnessed extraordinary growth over the last 

decade: see, for example, Goldenberg et al. (2010) and Kolaczyk (2009) for a discussion of 

the considerable applications in recent network science of several canonical random graph 

models. 

Of course, combinatorial graph theory itself is centuries old—indeed, in his resolution to the 

problem of the bridges of K¨onigsberg, Leonard Euler first formalized graphs as 

mathematical objects consisting of vertices and edges. The notion of a random graph, 

however, and the modern theory of inference on such graphs, is comparatively new, and owes 

much to the pioneering work of Erd˝os, R´enyi, and others in the late 1950s. E.N. Gilbert’s 

short 1959 paper (Gilbert, 1959) considered a random graph for which the existence of edges 

between vertices are independent Bernoulli random variables with common probability p; 

roughly concurrently, Erd˝os and R´enyi provided the first detailed analysis of the 

probabilities of the emergence of certain types of subgraphs within such graphs (Erd˝os and 

R´enyi, 1960), and today, graphs in which the edges arise independently and with common 

probability p are known as Erd˝os-R´enyi (or ER) graphs 

The Erd˝os-R´enyi (ER) model is one of the simplest generative models for random graphs, 

but this simplicity belies astonishingly rich behavior (see Alon and Spencer, 2008; Bollob´as 

et al., 2007). Nevertheless, in many applications, the requirement of a common connection 

probability is too stringent: graph vertices often represent heterogeneous entities, such as 

different people in a social network or cities in a transportation graph, and the connection 

probability pij between vertex i and j may well change with i and j or depend on underlying 

attributes of the vertices. Moreover, these heterogeneous vertex attributes may not be 

observable; for example, given the adjacency matrix of a Facebook community, the specific 

interests of the individuals may remain hidden. To more effectively model such real-world 

networks, we consider latent position random graphs (Hoff et al., 2002). In a latent position 

graph, to each vertex i in the graph there is associated an element xi of the so-called latent 

space X , and the probability of connection pij between any two edges i and j is given by a 

link or kernel function κ ∶ X × X → [0, 1]. That is, the edges are generated independently (so 

the graph is an independent-edge graph) and pij = κ(xi , xj). 

In any latent position graph, the latent positions associated to graph vertices can themselves 

be random; for instance, the latent positions may be independent, identically distributed 

random variables with some distribution F on R d . The well-known stochastic blockmodel 

(SBM), in which each vertex belongs to one of K subsets known as blocks, with connection 
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probabilities determined solely by block membership (Holland et al., 1983), can be 

represented as a random dot product graph in which all the vertices in a given block have the 

same latent positions (or, in the case of random latent positions, an RDPG for which the 

distribution F is supported on a finite set). Despite their structural simplicity, stochastic block 

models are the building blocks for all independent-edge random graphs; in Wolfe and Olhede 

(2013), the authors demonstrate that any independent-edge random graph can be well-

approximated by a stochastic block model with a sufficiently large number of blocks. Since 

stochastic block models can themselves be viewed as random dot product graphs, we see that 

suitably high-dimensional random dot product graphs can provide accurate approximations of 

latent position graphs (Tang et al., 2013), and, in turn, independent-edge graphs. Thus, the 

architectural simplicity of the random dot product graph makes it particularly amenable to 

analysis, and its near-universality in graph approximation renders it expansively applicable. 

In addition, the cornerstone of our analysis of random dot product graphs is a set of classical 

probabilistic and linear algebraic techniques that are useful in much broader settings, such as 

random matrix theory. As such, the random dot product graph is both a rich and interesting 

object of study in its own right and a natural point of departure for wider graph inference. 

The ambition and scope of our approach to graph inference means that mere upper bounds on 

discrepancies between parameters and their estimates will not suffice. Such bounds are 

legion. In our proofs of consistency, we improve several bounds of this type, and in some 

cases improve them so drastically that concentration inequalities and asymptotic limit 

distributions emerge in their wake. We stress that aside from specific cases (see F¨uredi and 

Koml´os, 1981; Tao and Vu, 2012; Lei, 2016), limiting distributions for eigenvalues and 

eigenvectors of random graphs are notably elusive. For the adjacency and Laplacian spectral 

embedding, we discuss not only consistency, but also asymptotic normality, robustness, and 

the use of the adjacency spectral embedding in the nascent field of multi-graph hypothesis 

testing. We illustrate how our techniques can be meaningfully applied to thorny and very 

sizable real data, improving on previously state-of-the-art methods for inference tasks such as 

community detection and classification in networks. What is more, as we now show, spectral 

graph embeddings are relevant to many complex and seemingly disparate aspects of graph 

inference. 

Review of Literature: 

A bird’s-eye view of our methodology might well start with the stochastic blockmodel. For 

an SBM with a finite number of blocks of stochastically equivalent vertices, in Sussman et al. 

(2012) and Fishkind et al. (2013), we establish that k-means clustering of the rows of the 

adjacency spectral embedding accurately partitions the vertices into the correct blocks, even 

when the embedding dimension is misspecified or the number of blocks is unknown.  

Furthermore, in Lyzinski et al. (2014) and Lyzinski et al. (2017) we give a significant 

improvement in the misclassification rate, by exhibiting an almost-surely perfect clustering in 

which, in the limit, no vertices whatsoever are misclassified. For random dot product graphs 

more generally, we show in Sussman et al. (2014) that the latent positions are consistently 

estimated by the embedding, which then allows for accurate learning in a supervised vertex 

classification framework. In Tang et al. (2013), these results are extended to more general 

latent position models, establishing a powerful universal consistency result for vertex 

classification in general latent position graphs, and also exhibiting an efficient embedding of 

vertices which were not observed in the original graph. In Athreya et al. (2016) and Tang and 

Priebe (2016), we supply distributional results, akin to a central limit theorem, for both the 

adjacency and Laplacian spectral embedding, respectively; the former leads to a nontrivially 

superior algorithm for the estimation of block memberships in a stochastic block model 

(Suwan et al., 2016), and the latter resolves, through an elegant comparison of Chernoff 

information, a long-standing open question of the relative merits of the adjacency and 

Laplacian graph representations.  

Morever, graph embedding plays a central role in the foundational work on hypothesis testing 

of Tang et al. (2017a) and Tang et al. (2017b) for two-sample graph comparison: these papers 

provide theoretically justified, valid and consistent hypothesis tests for the semiparamatric 
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problem of determining whether two random dot product graphs have the same latent 

positions and the nonparametric problem of determining whether two random dot product 

graphs have the same underlying distributions. This, then, yields a systematic framework for 

determining statistical similarity across graphs, which in turn underpins yet another provably 

consistent algorithm for the decomposition of random graphs with a hierarchical structure 

Lyzinski et al. (2017). In Levin et al. (2017), distributional results are given for an omnibus 

embedding of multiple random dot product graphs on the same vertex set, and this 

embedding performs well both for latent position estimation and for multi-sample graph 

testing. For the critical inference task of vertex nomination, in which the inference goal is to 

produce an ordering of vertices of interest (see, for instance Coppersmith, 2014), we find in  

Fishkind et al. (2015a) an array of principled vertex nomination algorithms —-the canonical, 

maximum likelihood and spectral vertex nomination schemes—and a demonstration of the 

algorithms’ effectiveness on both synthetic and real data.  

In Lyzinski et al. (2016b) the consistency of the maximum likelihood vertex nomination 

scheme is established, a scalable restricted version of the algorithm is introduced, and the 

algorithms are adapted to incorporate general vertex features. Overall, we stress that these 

principled techniques for random dot product graphs exploit the Euclidean nature of graph 

embeddings but are general enough to yield meaningful results for a wide variety of random 

graphs. Because our focus is, in part, on spectral methods, and because the adjacency matrix 

A of an independent-edge graph can be regarded as a noisy version of the matrix of 

probabilities P (Oliveira, 2009), we rely on several classical results on matrix perturbations, 

most prominently the Davis-Kahan Theorem (see Bhatia (1997) for the theorem itself, Rohe 

et al. (2011) for an illustration of its role in graph inference, and Yu et al. (2015) for a very 

useful variant). We also depend on the aforementioned spectral bounds in Oliveira (2009) 

and a more recent sharpening due to Lu and Peng (Lu and Peng, 2013). We leverage 

probabilistic concentration inequalities, such as those of Hoeffding and Bernstein (Tropp, 

2015). Finally, several of our results do require suitable eigengaps for P and lower bounds on 

graph density, as measured by the maximum degree and the size of the smallest eigenvalue of 

P. It is important to point out that in our analysis, we assume that the embedding dimension d 

of our graphs is known and fixed. In real data applications, such an embedding dimension is 

not known, and in Section 6.3, we discuss approaches (see Chatterjee, 2015; Zhu and Ghodsi, 

2006) to estimating the embedding dimension. Robustness of our procedures to errors in 

embedding dimension is a problem of current investigation. 

Random Graph Models 

A random graph is obtained by starting with a set of n vertices and adding edges between 

them at random. Different random graph models produce different probability distributions 

on graphs. The most commonly studied model, usually called the Erdos-Renyi graphs, is 

written as Gn,p, where n is the num- ber of nodes in the graph and p is the probability of any 

edge existing between any pair of nodes. This probability for one edge is independent of the 

existence of any other edge in the graph. Based on these 

A closely related model, Gn,m defines the set of graphs having n vertices and m randomly 

selected edges. Still another model of random graphs is a random graph with a given arbitrary 

probability distribution of the degrees of their vertices. In all respects other than their degree 

distribution, these graphs are assumed to be entirely random. This means that the degrees of 

all vertices are independent identically distributed random integers drawn from a specified 

distribution. For a given choice of these degrees, also called the ”degree sequence”, the 

set of random graphs having the degree sequence is called a Microcanonical Ensemble. 

Microcanonical Ensemble 

In studying the properties of random graphs, graph theorists often concentrate on the limit 

behavior of random graphsthe values that various probabilities converge to as n grows very 

large. In such cases, a Microcanonical Ensemble is a set of all large graphs having the same 
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degree sequence that matches as closely as possible to the desired degree probability 

distribution. Properties of such graphs are calculated by averaging over the whole ensemble 

of graphs of the given degree sequence. 

Phase Transition 

One of the most interesting aspects of this addition of the edges to form the random graph is 

the Phase Transition. There are two distinct phases in the formation of random graphs. 

Initially, the graph is disconnected and later, after addition of a certain number of edges, the 

graph becomes largely connected. Largely connected need not mean fully connected, it only 

means a large majority of the nodes is connected. Here comes the concept of Giant 

Components. Giant components are large connected components of a random graph, whose 

size is proportional to the size of the whole graph, i.e. O(n). So it increases linearly as the 

size of the graph increases. The emergence of GC in a evolving random graph marks the 

transition of the graph to the connected phase. Erdos and Renyi found out that there is a 

sharp threshold for the emergence of giant components, which is as follow: [7] 

Giant Components 

Giant Components is perhaps the most studied phenomenon in the field of random graphs is 

the be- havior of the size of the largest component in Gn,p. The major question on which we 

will be concentration in this discussion is that whether there can exist multiple giant 

components in a large random graph or not. For that purpose let us first understand the 

definitions of the terms to be used, then we prove that in the thermodynamic limit multiple 

giant components cannot exist. 

Multiple Giant Components 

One of the major question that arises in relation to giant components is that whether there can 

exist multiple giant components in a large random graph or not. So let us try to find out 

whether two giant components can exist is a random graph. That is given a ER random graph 

Gn,p of n nodes, what is the probability that there exist two giant components GC1 (size 

n1) and GC2 (size N2). We are using the Gn,p model, so we want to find out that what is
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the probability that these two components will not get 

Existence of a node in GC 

 
Existence of GC in a generalized random graph of given degree sequence 

In the paper The size of the giant component of a random graph with a given degree sequence 

by Molloy & Reed, they have suggested the following: 

This can be understood in an intuitive manner. If we are trying to traverse a the network like 

a graph by maintaining a list of unexplored nodes, then for a giant component to exist we 

must ensure that the list does not become empty i.e. the connected component can go on 

expanding. Now when we come to a node i having degree ki, we now have ki new nodes to 

traverse, which we have got at the cost of traversing 

 
Conclusion 

From the above discussions we can conclude that in the asymptotic case, ER graph of the 

form Gn,p cannot have more than one giant components. Also the probability of a node 
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being in the giant compo- nent is s = 1 − e−z.s. And given a degree sequence k0, k1, k2, . . ., 

a large random graph at thermodynamic limit having that degree sequence will have a giant 

component if 
Σ 

ki(ki − 2) > 0. 
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