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ABSTRACT 
The Fractional Reduced Differential Transform Method (FRDTM) is a powerful and efficient 

tool for solving fractional differential equations, which frequently arise in various fields such 

as biology, physics, and engineering. This paper explores the application of FRDTM to three 

distinct fractional mathematical models: the transmission of nerve impulses through the 

Fitzhugh-Naguma equation, the time fractional Rosenau-Hyman equation, and a bio-

mathematical model for the evolution of smoking habits in fixed populations. The method's 

accuracy and effectiveness are evaluated through error analysis and graphical approaches, 

demonstrating its superiority over traditional methods like the Homotopy Perturbation 

Method (HPM) and Adomian Decomposition Method (ADM). Numerical results confirm that 

FRDTM not only provides precise solutions but also significantly reduces computational 

complexity. This study highlights the potential of FRDTM as a reliable approach for solving 

complex fractional mathematical models, contributing to advancements in theoretical and 

applied mathematics. 
Keywords: Fractional Reduced Differential Transform Method (FRDTM), Fractional 

Differential Equations, Fitzhugh-Naguma Equation, Rosenau-Hyman Equation, Bio-

Mathematical Model, Error Analysis, Numerical Solutions. 

1. INTRODUCTION 

Here, we'll look at how the FRDTM may be used to solve biological systems models like the 

transmission of nerve, the time fractional Rosenau-Hymanequation, and an out-of-the-

box model for the change of smoking habits in fixed populations. Error analysis and graphical 

approaches are used to evaluate the suggested method's accuracy. 

2. FRDTM FOR FRACTIONAL MATHEMATICAL MODEL FOR TRANSMISSION 

OF NERVE 

This part uses the FRDTM to solve the Fitzhugh-Naguma fractional equation. When 

compared to HPM and ADM, the numerical solution found using this approach produces very 

accurate results. Using the suggested method, the nonlinear fractional partial derivative 

equations may be solved effectively. We consider the fractional Fitzhugh-Naguma equation as 

pursue: 

                                      ut
α=uxx+u(u−δ)(1−u), 

 ut
α=uxx+u2−u3−uδ+u2δ,                                                          (1.1) 

where δ is arbitrary constant and 0 < δ ≤ 1. 

Research into the transmission of nerve impulses is shown in the equation (1.1). In biology, 

population genetics, and circuit theory, Equation (1.1) has several applications. The Fitzhugh-

Naguma classical equation was solved using HPM, VIM, and ADM. 

Solution by FRDTM 

We have following recurrence formula for equation (1.1) 
Uk+1(x) =

Γ(1 + αk)

Γ(α + 1 + αk)
[
∂2

∂x2
Uk(x) + (1 + δ)∑  

k

r=0

Ur(x)Uk−1(x) −∑  

k

r=0

∑ 

r

i=0

Ui(x)Ur−i(x)Uk−r(x) − δUk(x)]
 

with initial conditions                                                                                           (1.2) 

                                                                                 (1.3) 

Using recurrence relation (1.2) and initial condition (1.3), we get for k=0 

U1(x) =
1

Γ(α+1)
[
∂2

∂x2
U0(x) + (δ + 1)U0

2(x) − U0
3(x) − δU0(x)]

U1(x) =
1

Γ(α+1)
[
∂2

∂x2
(
1

2
+

1

2
tanh (

√2x

4
)) + (1 + δ) (
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2
+

1
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√2x

4
))

2

−(
1

2
+

1

2
tanh (

√2x

4
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2
+

1
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√2x
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))]
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U1(x) =
1

Γ(α+1)
[−

1

8
sec⁡ h2 (

√2x

4
) tan⁡ h (

√2x

4
)

+(
1

2
+

1

2
tan⁡ h (

√2x

4
)) {(1 + δ) (

1

2
+

1

2
tan⁡ h (

√2x

4
)) − (

1

2
+

1

2
tan⁡ h (

√2x

4
))

2

− δ}]

U1(x) =
1

Γ(α+1)

(1−2δ)

8
sec h2 (

√2x

4
) ⁡Similarly⁡we⁡get⁡,

U2(x) = −
1

Γ(2α+1)

(1−2δ)2

16
tanh⁡ h (

√2x

4
) sec⁡ h2 (

√2x

4
)

 

Therefore the approximate solution of (1.1) is known as 

   

U(x, t) = (
1

2
+

1

2
tan h (

√2x

4
) +

1

Γ(α+1)

(1−2δ)tα

8
sec h2 (

√2x

4
)

−
t2α

Γ(2α+1)

(1−2δ)2

16
tan h (

√2x

4
) sec h2 (

√2x

4
) + ⋯ . ) ⁡⁡α = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1.4)

U(x, t) = (
1

2
+

1

2
tan h (

√2x

4
) +

(1−2δ)t

8
sec2 (

√2x

4
) −

t2(1−2δ)2

32
tan h (

√2x

4
) sec2 (

√2x

4
)…⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(⁡1.5)

                                                                                                                                                              

                               

FRDTM's output is exactly in line with the correct answer. The suggested method is tested by 

comparing the estimated result with the precise result to see whether it is effective and 

accurate. 

Table 1.1: FRDTM's precise solution for the fractional Fitzhugh-Naguma equation and 

the absolute inaccuracy of the II approximation solution 

ti/xi 0.1 0.2 0.3 

0.1 4.8455 x 10-5 4.8455 x 10-4 4.8455 x 10-3 

0.2 3.3554 x 10-5 3.3554 x 10-4 3.3554 x 10-3 

0.3 2.7872 x 10-5 2.7872 x 10-4 2.7872 x 10-3 

Table 1.2: The absolute difference between the ninth estimated numerical solution via 

ADM and the actual answer 

ti/xi 0.1 0.2 0.3 

0.1 4.8455 x 10-5 4.8455 x 10-4 4.8455 x 10-3 

0.2 3.3554 x 10-5 3.3554 x 10-4 3.3554 x 10-3 

0.3 2.7872 x 10-5 2.7872 x 10-4 2.7872 x 10-3 

Table 1.3: The absolute difference between the fifth estimated numerical solution via 

HPM and the actual answer 

ti/xi 0.1 0.2 0.3 

0.1 4.0710 x 10-17 2.0911 x 10-14 8.0606 x 10-13 

0.2 3.7487 x 10-17 1.9339 x 10-14 7.4868 x 10-13 

0.3 3.2283 x 10-17 1.6742 x 10-14 6.5147 x 10-13 

 
Figure 1.1: Fitzhugh-Nagumo equation phase diagram of u for the precise solution                                    

Figure 1.2: Phase plot of u at order of derivative 0.50 
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Figure 5.3: Phase plot of u at order of derivative 1.0 

                                    Figure 1.4: Phase plot of u at order of derivative 0.75 

 
Figure 1.5: Phase plot of u at order derivative 0.25 

    Figure 1.6: Graph of u at x=1 for various order of derivatives 

 
Figure 1.7: Fitzhugh-Nagumo equation approximation error phase diagram at order of 

derivative 1.0 

A simple and effective approach for solving the Fitzhugh-Nauma equation is shown in this 

section. As can be seen from the comparison with previous work, the presented solutions for 

=1 produce efficient approximations to the precise answer only after a few iterations. These 

solutions are identical to those provided by Mehdi, Jalil, and Abbas. In addition, the FRDTM 

computation is straightforward and easy to understand. 

3 FRDTM FOR THE TIME FRACTIONAL ROSENAU-HYMAN EQUATION 

(FRH) 

Using FRDTM, an analytic approximation solution to the time fractional Rosenau-Hyman 

issue is examined in this section. The Caputo-style fractional differentiations are used. When 

FRDTM's explanation is compared to the precise answers, it is discovered that the produced 

findings are quite close to the exact solution in agreement. Then we conduct a thorough study 
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of the FRDTM data up to the second approximation and estimate the inaccuracy. A 

comparison table of various numerical solutions shows that the current technique provides a 

reliable, efficient, and convergent solution in the form of an easily computable and 

convergent series. When liquid drop patterns form, the Rosenau-Hyman time fractional 

equation (FRH) comes into play. Methods used by Molliq and Noorani to solve a fractional 

Rosenau-Hyman equation include the use of VIM and HPM techniques. 

with preliminary condition                                                                              (1.6)  

Solution by FRDTM, 

Applying FRTDM on equation (5.6), we find the given upswing relation 

 

 

                                                                   (1.7) 

 

 

 

 

with initial conditions 

 

Using recurrence relation (5.7) and initial condition (5.8), we get                              (1.8) 

For k = 0 
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Finally the approximate solution of problem (5.6) is found as 
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For 𝛼 = 1, we get 
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𝑢(𝑥, 𝑡) = −
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which is the exact solution                                                                                

Table 1.4: Fractional Rosenau-II Hyman's approximation solution error analysis 𝜶 

=1and 

𝒄 =1 

X T II-Approx. 

result by 

FRTDM 

Exact Absolute 

error |UExact - 

UFRDTM| at 

𝜶 = 𝟏 
𝜋

4
 0.2 -2.61 -2.61 0.0 

0.4 -2.6426 -2.642 0.0006 

  0.6 -2.6628 -2.6609 0.0019 
𝜋

2
 

 
0.2 -2.3657 -2.3656 0.0001 

0.4 -2.4458 -2.4447 0.0011 

0.6 -2.5166 -2.5127 0.0039 

   
3𝜋

4
 

0.2 -1.9642 -1.964 0.0002 

0.4 -2.0797 -2.0781 0.0016 

0.6 -2.1902 -2.1848 0.0054 

𝜋  0.2 -1.4667 -1.4664 0.0003 

0.4 -1.6 -1.5982 0.0018 

0.6 -1.7333 -1.7274 0.0059 

Table 1.5: Fifth term solution through VIM and HPM when  𝜶  =1 

X T VIM HPM 
𝜋

4
 0.2 -2.6099 -2.6099 

0.6 -2.6609 -2.6609 

1.0 -2.659 -2.6589 
𝜋

2
 

 

0.2 -2.3655 -2.3655 

0.6 -2.5126 -2.5126 

1.0 -2.6127 -2.6127 
3𝜋

4
 

0.2 -0.4893 -0.4893 

0.6 -0.71125 -0.71125 

1.0 -0.9579 -0.9579 

𝜋 

 

0.2 -1.4664 -1.4664 

0.6 -1.7273 -1.7273 

1.0 -1.9725 -1.9725 

4 NUMERICAL RESULTS AND DISCUSSIONS 

Table 1.4 shows the comparison between the FRDTM results produced at the second 

approximation and the precise solution for =1 for various values of x and t. As shown in 

Table 1.5, for various x, t values, the approximate solution using 5th iterations of VIM and 

HPM for = 1 may be found. The FRDTM is used to solve the Caputo time fractional order 

Rosenau-Hyman issue that arises while creating liquid droplets. FRH equation with an initial 

condition has a suggested solution in the form of power series, which does not need 

discretization, perturbation or He's polynomials. Second approximation results in a great 

agreement with the fifth term solutions of VIM and HPM. Convergence times for the 

approach are much quicker than for the VIM and HPM, which are used as an approximation 

for the technique. Nonlinear fractional derivative problems exist in many fields of practical 

mathematics, hence semi-analytical techniques are more effective and efficient. 
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Fractional  Order Bio-Mathematical Model for the Darwinism of the Smoking Habit 

In this section, we'll employ FRDTM to regularly get the infected person's lucidity needed for 

the growth of population smoking behaviours. The growth of socially unacceptable 

behaviors, such as smoking, obesity epidemics, alcohol and cocaine addiction, has repeatedly 

been linked to the etiology of non-fatal disease in a community. In the current study, we 

investigate how smoking habits might spread. With the parameter beginning values, we will 

utilize actual, real-world data. The following presumptions will be taken into account: 

1. A regular population is fix that is the birth and death rates are equal but not equal to zero; 

2. The total number of individual is unique, but is constantly renewed. 

3. Non-smokers are those who have never smoked, regular smokers are those who smoke 

less than 20 cigarettes per day, heavy smokers are those who smoke more than 20 

cigarettes per day, and ex-smokers are those who have previously smoked. They are 

represented by X, Y, S, and B, respectively. The result is a fractional mathematical model 

for the development of a smoking habit.                                                                            

𝐷𝜀
𝛼𝑥(𝜀) = 𝜗 − (𝑑0 + 𝜗)𝑥(𝜀) + 𝑑0𝑥

2(𝜀) + (𝑑𝑓 − 𝛽)𝑥(𝜀)(𝑦(𝜀) + 𝑠(𝜀)) + (
𝑑0 + 𝑑𝑓

2
) 𝑥(𝜀)𝑏(𝜀), (1.11)

𝐷𝜀
𝛼𝑦(𝜀) = 𝛽𝑥(𝜀)(𝑦(𝜀) + 𝑠(𝜀)) + 𝜌𝑏(𝜀) + 𝛼𝑠(𝜀) − (𝛾 + 𝜆 + 𝜗 + 𝑑𝑓)𝑦(𝜀) + 𝑑0𝑥(𝜀)𝑦(𝜀)

+𝑑𝑓𝑦(𝜀)(𝑦(𝜀) + 𝑠(𝜀)) + (
𝑑0 + 𝑑𝑓

2
)𝑦(𝜀)𝑏(𝜀),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1.12)

 

𝐷𝜀
𝛼𝑠(𝜀) = 𝛾𝑦(𝜀) − (𝛼 + 𝛿 + 𝜗 + 𝑑𝑓)𝑠(𝜀) + 𝑑0𝑥(𝜀)𝑠(𝜀) + 𝑑𝑓𝑠(𝜀)(𝑦(𝜀) + 𝑠(𝜀)) + (

𝑑0 + 𝑑𝑓

2
) 𝑠(𝜀)𝑏(𝜀)⁡, (1.13)

𝐷𝜀
𝛼𝑏(𝜀) = 𝜆𝑦(𝜀) + 𝛿𝑠(𝜀) − (𝜌 + 𝜗 +

𝑑0 + 𝑑𝑓

2
)𝑏(𝜀) + 𝑑0𝑥(𝜀)𝑏(𝜀) + 𝑑𝑓𝑏(𝜀)(𝑦(𝜀) + 𝑠(𝜀))

+(
𝑑0 + 𝑑𝑓

2
) 𝑏2(𝜀)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1.14)

 

x = 
𝑋

𝑃
 , y = 

𝑌

𝑃
 , s = 

𝑆

𝑃
 , b = 

𝐵

𝑃
 where P shows the total fix population. 

Solution by FRDTM, 

By using FRDTM in equation (5.11) 

                                                                                                                                                                                                        

𝑋𝑘+1(𝜀) =
𝛤(𝛼𝑘+1)

𝛤(𝛼+1+𝛼𝑘)
[𝜗𝛿(𝑘) − (𝑑0 + 𝜗)𝑋𝑘(𝜀) + 𝑑0∑  𝑘

𝑦=0 𝑋𝛾(𝜀)𝑋𝑘−𝛾(𝜀) + (𝑑𝑓 −

𝛽)∑  𝑘
𝛾=0 𝑋𝛾(𝜀)𝑌𝑘−𝛾(𝜀) 

 

where 𝜗 = 0.01, 𝑑0 = 0.0087, 𝑑𝑓 = 0.0132, 𝛽 = 0.0381, 𝜌 = 0.0425, 𝛼 = 0.1244 

𝛾 = 0.1175⁡, 𝜆 = 0.0498⁡, 𝛿 = 0.0498⁡  
with preliminary condition  

X(0) = 0.5045 , S(O)= 0.1559 , Y(O) = 0.2059 , B(O)= 0,1337 

We get   

𝑋1(𝜀) =
1

𝛤(1 + 𝛼)
[𝜗 − (𝑑0 + 𝜗)(0.5045) + 𝑑0(0.5045)

2 + (𝑑𝑓 − 𝛽)(0.5045)(0.2059)

+(𝑑𝑓 − 𝛽)(0.5045)(0.1559) + (
𝑑0 + 𝑑𝑓

2
) (0.5045)(0.1337)]

𝑋1(𝜀) =
1

𝛤(1 + 𝛼)
[(0.01) − (0.0087 + 0.01)0.5045 + 0.0087(0.5045)2

+(0.0132 − 0.0381)(0.5045)(0.2059) + (0.0132 − 0.0381)(0.5045)(0.1559)

+(
0.0087 + 0.0132

2
) (0.5045)(0.1337)]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
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𝑋1(𝜀) =
1

𝛤(1 + 𝛼)
[(0.01) − (0.0094) + (0.0022) − (0.0026) − (0.0019) + (0.0007)]

𝑋1(𝜀) =
1

𝛤(1 + 𝛼)
[(−0.001)]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1.16)⁡

𝑌𝑘+1(𝜀) =
𝛤(1 + 𝛼𝑘)

𝛤(𝛼 + 1 + 𝛼𝑘)
[∑  

𝑘

𝛾=0

𝛽𝑋𝑦(𝜀)𝑌𝑘−𝛾(𝜀) +∑  

𝑘

𝑦=0

𝛽𝑋𝛾(𝜀)𝑆1−𝛾(𝜀) + 𝜌𝐵𝑘(𝜀) + 𝛼𝑆𝑘(𝜀)

−(𝛾 + 𝜆 + 𝜗 + 𝑑𝑓)𝑌𝑘(𝜀) + 𝑑0∑ 

𝑘

𝛾=0

𝑋𝑦(𝜀)𝑌𝑘−𝛾(𝜀) + 𝑑𝑓 ∑ 

𝑘

𝛾=0

𝑌𝛾(𝜀)𝑌𝑘−𝛾(𝜀)

+𝑑𝑓 ∑ 

𝑘

𝛾=0

𝑌𝛾(𝜀)𝑆𝑘−𝛾(𝜀) + (
𝑑0 + 𝑑𝑓

2
)∑  

𝑘

𝛾=0

𝑌𝑌(𝜀)𝐵𝑘−𝛾(𝜀)]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1.17)

 

For k = 0  

𝑌1(𝜀) =
1

𝛤(𝛼+1)
[𝛽𝑋0𝑌0 + 𝛽𝑋0𝑆0 + 𝜌𝐵0 + 𝛼𝑆0 − (𝛾 + 𝜆 + 𝜗 + 𝑑𝑓)𝑌0 + 𝑑0(𝑋0𝑌0)

+𝑑𝑓(𝑌0𝑌0) + 𝑑𝑓(𝑌0𝑆0) + (
𝑑0+𝑑𝑓

2
)𝑌0𝐵0]

𝑌1(𝜀) =
1

𝛤(𝛼+1)
[(0.0381)(0.5045)(0.2059) + (0.0381)(0.5045)(0.1559) + (0.0425)(0.1337)

+(0.1244)(0.1559) − (0.1175 + 0.0498 + 0.01 + 0.0132)(0.2059)

+(0.0087)(0.05045)(0.2059) + (0.0132)(0.2059)2 + (0.0132)(0.2059)(0.1559)

+(
0.0087+0.0132

2
) (0.2059)(0.1337)]

𝑌1(𝜀) =
1

𝛤(𝛼+1)
[0.0039 + 0.0029 + 0.056 + 0.0193 − 0.039 + 0.0009 + 0.0005 + 0.0004 + 0.0003]

𝑌1(𝜀) =
1

𝛤(𝛼+1)
[−0.0052]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1.18)

                                                  

Using FRDTM in equation (5.13) 

 

 

⁡+𝑑𝑓∑𝛾−0
𝑘  𝑆𝛾(𝜀)𝑌𝑘−𝛾(𝜀) + 𝑑𝑓∑𝑦−0

𝑘  𝑆𝛾(𝜀)𝑆𝑘−𝛾(𝜀) + (
𝑑𝑓+𝑑0

2
)∑𝛾−0

𝑘  𝑆𝛾(𝜀)𝐵𝑘−𝛾(𝜀)            (1.19)

 For 𝑘 = 0

𝑆1(𝜀) =
1

𝛤(𝛼+1)
[𝛾𝑌0(𝜀) − (𝛼 + 𝛿 + 𝜗 + 𝑑𝑓)𝑆0(𝜀) + 𝑑0(𝑋0(𝜀)𝑆0(𝜀)) + 𝑑𝑓(𝑆0(𝜀)𝑌0(𝜀))

+𝑑𝑓(𝑆0(𝜀)𝑆0(𝜀)) + (
𝑑0+𝑑𝑓

2
) (𝑆0(𝜀)𝐵0(𝜀))] , 

𝑆1(𝜀) =
1

𝛤(𝛼+1)
[(0.1175)(0.2059) − (0.1244 + 0.0498 + 0.01 + 0.0132)(0.1559)

⁡+(0.0087)(0.5045)(0.1559) + (0.0132)(0.2059)(0.1559)

+(0.0132)(0.1559)2 + (
0.0087+0.0132

2
) (0.1559)(0.1337)] ,

𝑆1(𝜀) =
1

𝛤(𝛼+1)
[0.0241 − 0.0307 + 0.0006 + 0.0004 + 0.0003 + 0.0002],

𝑆1(𝜀) =
1

𝛤(𝛼+1)
(−0.0051)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1.20)

 

Using FRDTM in equation (5.14) 

𝐵𝑘+1 =
𝛤(1 + 𝛼𝑘)

𝛤(𝛼𝑘 + 𝛼 + 1)
[𝜆𝑌𝑘(𝜀) + 𝛿𝑆𝑘(𝜀) − (𝜌 + 𝜗 +

𝑑0 + 𝑑𝑓

2
)𝐵𝑘(𝜀) + 𝑑0∑ 

𝑘

𝛾−0

𝑋𝛾(𝜀)𝐵𝑘−𝑦(𝜀)

+𝑑𝑓 ∑ 

𝑘

𝛾=0

𝐵𝛾(𝜀)𝑌𝑘−𝛾(𝜀) + 𝑑𝑓 ∑ 

𝑘

𝛾=0

𝐵𝛾(𝜀)𝑆𝑘−𝛾(𝜀) + (
𝑑𝑓 + 𝑑0

2
)∑  

𝑘

𝛾−0

𝐵𝛾(𝜀)𝐵𝑘−𝛾(𝜀)] .

 

For k = 0 
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𝐵1(𝜀) =
1

𝛤(𝛼 + 1)
[𝜆𝑌0(𝜀) + 𝛿𝑆0(𝜀) − (𝜌 + 𝜗 +

𝑑0 + 𝑑𝑓

2
)𝐵0(𝜀) + 𝑑0(𝑋0(𝜀)𝐵0(𝜀))

+𝑑𝑓(𝐵0(𝜀)𝑌0(𝜀)) + 𝑑𝑓(𝐵0(𝜀)𝑆0(𝜀)) + (
𝑑0 + 𝑑𝑓

2
) (𝐵0(𝜀)𝐵0(𝜀))]

𝐵1(𝜀) =
1

𝛤(𝛼 + 1)
[(0.0498)(0.02059) + (0.0498)(0.1559)

⁡−(0.0425 + 0.01 + (
0.0087 + 0.0132

2
))(0.1337) + (0.0087)(0.5045)(0.1337)

+(0.0132)(0.1337)(0.2059) + (0.0132)(0.1337)(0.1559) + (
0.0087 + 0.0132

2
) (0.1337)2]

𝐵1(𝜀) =
1

𝛤(𝛼 + 1)
[0.01025 + 0.00776 − 0.00848 + 0.00058 + 0.00036 + 0.00027 + 0.00019]

𝐵1(𝜀) =
1

𝛤(𝛼 + 1)
(0.01093)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1.21)

 

        
                                         Figure 1.9: Plot of X, Y, S, B vs. time at order of derivative 0.50 

      Figure 1.10: Plot of X, Y, S, B vs. time at order of derivative 0.75 

The fractional derivative equation approach, which includes a specific mathematical formula 

for smoking habit development in the present population, is used to derive approximations of 

solutions in the section above. Accuracy, overall productivity, and dependability are readily 

shown in graphic charts of absolute errors and approximations of answers. 

5. CONCLUSION 

The primary advantage of the suggested numerical approach is its capacity to provide much 

superior data in terms of the regular average solution for a specific time span. The creation of 

efficient binary schemes for nonlinear fractional ordinary differential equations and their 

application to solve mathematical models will help to clarify, quantify, and improve the 

aforementioned research goals. 
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