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ABSTRACT 
In the era of big data, traditional data processing techniques often fall short in extracting 

meaningful insights from vast and complex datasets. This paper explores the effectiveness of 

semantic enhancement methods, specifically focusing on two novel approaches: MOUNT 

(Modular Ontology-based Query Translator) and SEASOR (Semantic-based Adaptive Scalable 

Object-Relational system). By augmenting raw data with semantic information, these methods 

aim to improve data interoperability, searchability, and analytical capabilities. Through a 

comprehensive evaluation, this study compares the performance of MOUNT and SEASOR 

against existing methods using various metrics such as data quality, query execution time, and 

result accuracy. The findings highlight significant improvements in query performance and 

data integration, demonstrating the potential of semantic enrichment to transform raw data into 

valuable insights. This research provides a nuanced understanding of how these methods can 

enhance big data query processing, driving more informed decision-making and fostering 

innovation across various domains. 
Keywords: MOUNT, SEASOR, Semantic enhancement 

1. Introduction 

Two new approaches to semantic enrichment—one for static databases and one for dynamic 

streaming data—have been shown in earlier chapters of this thesis. Two distinct methods for 

semantic enrichment, MOUNT and SEASOR. By comparing the proposed method's 

performance to that of the current method and testing it on the relevant datasets, this chapter 

shows how the two approaches differ in terms of performance using different evaluation 

criteria. In the era of big data, the volume, variety, and velocity of data are growing at an 

unprecedented rate, presenting significant challenges for data management, analysis, and 

utilization. Traditional data processing techniques often fall short in extracting meaningful 

insights from such vast and complex datasets. This gap has led to the development of semantic 

enhancement methods, which aim to enrich raw data with semantic information, thereby 

improving data interoperability, searchability, and analytical capabilities. Semantic 

enhancement involves augmenting data with metadata that provides context and meaning, 

facilitating a deeper understanding and more efficient processing of information. Techniques 

such as natural language processing (NLP), ontology development, and semantic annotation 

are employed to transform unstructured or semi-structured data into structured, semantically 

rich datasets. These methods enable more accurate and relevant data retrieval, enhance the 

integration of heterogeneous data sources, and support advanced analytics and decision-making 

processes. The effectiveness of semantic enhancement methods can be measured across various 

dimensions, including data quality, query performance, and the ability to derive actionable 

insights. Evaluating these methods involves assessing their impact on data integration, search 

and retrieval efficiency, and the overall utility of the enhanced data in practical applications. 

By systematically analyzing the strengths and limitations of different semantic enhancement 

techniques, organizations can identify the most suitable approaches for their specific data 

environments and analytical needs. This analysis begins with an overview of key semantic 

enhancement methods, including their underlying principles and typical applications. 

Subsequently, we delve into case studies and empirical evaluations that illustrate the real-world 

impact of these methods on data processing and analytics. Finally, we discuss best practices 

and future directions for leveraging semantic enhancement to address emerging challenges in 

big data and knowledge management. Through this comprehensive examination, we aim to 

provide a nuanced understanding of how semantic enhancement methods can transform raw 

data into valuable insights, driving more informed decision-making and fostering innovation 

across various domains. 

2. The MOUNT and SEASOR Methodology Performance Evaluation  

The MOUNT system integrates the Hadoop big data environment's multi-level semantic 
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annotation architecture. A 64-bit Ubuntu 12.04 machine with an Intel ® Pentium (R) Dual CPU 

E2160, 1.80 GHz CPU, and 151.8 GB of RAM is used for the research. The multi-level 

semantic annotation methodology requires the following software: Hadoop 1.2.1, HBase 

0.94.16, Java 1.8.0 and Java HotSpot (TM) 64-Bit Server VM.  To assess performance during 

SEASOR technique deployment, a number of software and hardware configurations are 

needed. These tests were carried out on a 64-bit Ubuntu 12.04 PC equipped with an Intel ® 

Pentium (R) Dual CPU E2160, 1.80 GHz CPU, and 128 GB of RAM. Java HotSpot (TM) 64-

Bit Server VM and Java version 1.7 are the software prerequisites.  

Table 1: Comparison of MOUNT and SEASOR Implementation Scenarios 

Aspect MOUNT SEASOR 

Dataset Types Structured and Unstructured Stream Data 

Dataset Sources Medicare, NCSU Image 

Database, BBC news, Open 

Source Sports 

Intel Berkeley Research Lab 

Structured Data Hospital data (e.g., hospital 

name, address, city) 

Seasor readings (e.g., date, time, 

epoch, mote id, temperature, 

humidity, light, voltage) 

Unstructured Data Medical images, news 

documents, sports data 

Not applicable 

Storage Frameworks Hadoop, HBase Not specified 

Storage Method for 

Structured Data 

Column-oriented NoSQL 

database 

Not specified 

Storage Method for 

Unstructured Data 

Distributed file system Not specified 

Query Processing 

Evaluation 

Effectiveness and accuracy for 

heterogeneous data 

management 

Accuracy and execution time for 

stream data processing 

Scalability 

Evaluation 

Not specified Impact of window size and number 

of seasors on performance 

Performance 

Metrics 

Not specified Result accuracy, execution time 

Comparison with 

Existing Systems 

Not specified CQELS, LSM 

Comparison of Evaluation Metrics: MOUNT vs SEASOR 

Table 2: Comparison of Evaluation Metrics: MOUNT vs SEASOR 

Evaluation 

Metric 

MOUNT SEASOR 

Scalability Evaluated by varying the number 

of triples. 

Evaluated by varying the number of 

seasors and the size of the window. 

Correctness Measured through precision and 

recall. 

Accuracy implied through result 

accuracy for stream data processing. 

Precision Percentage of information 

returned that is correct. 

Not explicitly mentioned. 

Recall Proportion of relevant results 

retrieved. 

Not explicitly mentioned. 

Query 

Execution 

Time 

Time taken to execute user 

queries, examined by varying the 

number of tuples and query types. 

Execution time compared with 

CQELS and LSM, evaluated for the 

number of triples and query 

registration. 

3.  Analysing the Results 

3.1 MOUNT Approach 

3.1.1 The effect of the triple count  

In the realm of semantic web technologies and knowledge representation, triples form the 
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foundational building blocks for representing data. A triple, composed of a subject, predicate, 

and object, encapsulates a single fact or assertion about the data. The number of triples, or triple 

count, within a dataset is a critical metric that can significantly influence the performance and 

scalability of semantic web applications. Understanding the effect of triple count is essential 

for optimizing data storage, query processing, and overall system efficiency. As the triple count 

increases, the complexity of managing and querying the data also escalates. Large triple counts 

can lead to performance bottlenecks, increased storage requirements, and longer query 

response times. Therefore, evaluating the impact of triple count on semantic enhancement 

methods, such as semantic annotation, RDF (Resource Description Framework) storage, and 

SPARQL (SPARQL Protocol and RDF Query Language) query execution, is crucial for 

designing effective and efficient semantic web systems. This introduction delves into the 

various dimensions affected by the triple count, including storage, indexing, query 

performance, and system scalability. It also explores strategies and best practices for managing 

high triple counts, such as triple compression, efficient indexing mechanisms, and query 

optimization techniques. Through empirical studies and theoretical analysis, we aim to provide 

insights into how the triple count influences the performance of semantic web technologies and 

what measures can be taken to mitigate its adverse effects. 

Key Areas of Impact 

1. Storage Requirements: 

o As the number of triples grows, the storage space needed to accommodate them increases 

correspondingly. Efficient storage solutions, such as specialized RDF stores and graph 

databases, are necessary to handle large triple counts without compromising performance. 

2. Indexing and Retrieval: 

o Effective indexing mechanisms are critical for facilitating quick data retrieval in large 

triple datasets. Indexes must be designed to support efficient SPARQL query execution, 

even as the triple count scales into the billions. 

3. Query Performance: 

o The complexity and execution time of SPARQL queries are directly impacted by the triple 

count. High triple counts can lead to slower query responses and increased computational 

overhead. Query optimization techniques, including query rewriting and caching, are 

essential to maintain performance. 

4. System Scalability: 

o Ensuring that semantic web systems can scale to handle large triple counts is a significant 

challenge. Scalable architectures, distributed computing, and parallel processing 

techniques are crucial for maintaining system efficiency as data volumes grow. 

5. Semantic Enrichment and Reasoning: 

o Semantic enhancement methods, such as reasoning and inference, become more resource-

intensive with higher triple counts. Strategies to optimize reasoning processes and manage 

computational resources are vital for maintaining the effectiveness of semantic 

enhancements. 

The performance of the MOUNT for execution time as the number of triples and user requests 

increase is shown in Figure 1 and Table 3 Requests per second can be anything from 1000 to 

2000, and the amount of triples can range from 2.8 million to 14 million. As can be seen in 

Figure 4.1, the execution time grows in direct proportion to the number of triples and the 

number of concurrent user requests. The MOUNT system completes 1000 queries in 23 

milliseconds and 2000 requests in 29 milliseconds for the 14 million triples. The MOUNT 

system makes good use of the Hadoop environment to manage the increase of both the user's 

queries and the triples.  

Figure 1 Number of triples Vs. Execution Time 
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Table 3:  Number of triples Vs. Execution Time 

Number of triples (millions) Execution Time (ms) 

No. of Req =1000 No. of Req =2000 

2.8 3.5 6 

4.8 8.5 12 

8.1 14.5 19 

10.5 19 24 

14 23 29 

As the number of triples increases from 150 million to 350 million, Figure 2a and 2b 

demonstrate the performance variation in terms of recall and precision of the MOUNT system, 

as well as the existing Airstore and GSA techniques. The effect of big data annotation and 

WordNet engagement on the precision of the query outcome is seen in Figures 2a and 2b. The 

MOUNT uses semantic annotation to bring together all the different types of data, adds it to 

the global RDF ontology, and then makes sure that users get the results they want from their 

queries. When a user enters a query, MOUNT uses WordNet to guarantee a semantic result, 

which boosts recall while decreasing precision. After a specific number of triples, the GSA 

approach's performance drops by 1%, despite the fact that it improves the recall value compared 

to the Airstore approach. This is owing to the fact that, when applied to collections of data that 

are inherently diverse, spatial database-based annotation yields subpar results, and this is all 

because these sources are not adequately integrated.  

 

Figure 2a Number of triples Vs. Precision 

Figure 2b Number of triples Vs. Recall 

In order to achieve high recall with poor precision, the MOUNT system utilises WordNet and 

multi-level semantic annotation to extract the most accurate findings. According to the data, 

when it comes to 350 million triples, the MOUNT method achieves a recall and precision of 

0.95 and 0.705, respectively, while the current Airstore method only manages 0.66 and 0.89 in 

the same situation. Due to fluctuation in the relevant number of triples, the recall value drops 

as the number of triples grows, even while the precision value increases. At 350 triples, the 

GSA method outperforms the Airstore method in terms of recall by 3.8% and the MOUNT 

method by 1.8%. The numerical points of Figure 2a and 2b are illustrated in Table 4a and 4b, 

respectively. 

Table 4a Number of triples Vs. Precision 

Number of triples (millions) Precision 

MOUNT Airstore GSA 

150 0.48 0.43 0.475 

200 0.58 0.52 0.55 

250 0.64 0.58 0.62 

300 0.68 0.62 0.66 

350 0.70 0.66 0.65 
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Table 4b Number of triples Vs. Recall 

Number of triples (millions) Recall 

MOUNT Airstore GSA 

150 0.98 0.95 0.968 

200 0.975 0.932 0.952 

250 0.968 0.928 0.948 

300 0.952 0.91 0.935 

350 0.948 0.892 0.93 

3.1.2 Input's effect   

In the context of big data and semantic web technologies, scalability is a critical factor that 

determines the effectiveness and efficiency of data processing methods. As the volume of input 

data grows, particularly in terms of the number of triples, it is essential to understand how query 

execution times are impacted. This understanding helps in assessing the scalability of different 

methods and in optimizing them for better performance under varying data loads. Two 

methods, MOUNT (Massive Ontology Unification and Normalization Technique) and 

Airstore, are often compared for their performance in handling large volumes of semantic data. 

By examining the runtimes of these methods in response to increasing numbers of input 

sources, we can gain insights into their scalability and identify potential bottlenecks. 

Testing MOUNT's Scalability: One effective approach to testing the scalability of MOUNT 

is to systematically increase the number of input sources and observe the resulting changes in 

query execution time. This method allows us to evaluate how well MOUNT handles different 

volumes of triples and to compare its performance with Airstore. The following sections detail 

the methodology, observations, and implications of this scalability test. 

Methodology 

1. Setup and Configuration: 

o Configure the testing environment with identical hardware and software settings to 

ensure a fair comparison between MOUNT and Airstore. 

o Use a diverse set of input sources to simulate real-world scenarios, ranging from small 

datasets to large, complex data collections. 

2. Incremental Input Increase: 

o Start with a baseline number of input sources and gradually increase the volume of triples 

by adding more sources. 

o At each increment, measure the query execution time for both MOUNT and Airstore 

methods. 

3. Data Collection and Analysis: 

o Collect runtime data at each step to create a detailed performance profile. 

o Use statistical methods to analyze the impact of increasing input sources on query 

execution times. 

4.  Observations and Results 

The runtimes of the MOUNT and Airstore methods are shown in Figure 3. One way to test 

MOUNT's scalability is to increase the number of input sources and see how the query 

execution time  changes in response to different volumes of triples. There could be anywhere 

from 2.8 million to 14 million triples in this case. Over the different  triples, the fixed query is 

run on both systems. The query execution time grows linearly with the number of triples, as 

shown in Figure 3. This indicates that the MOUNT system outperforms the Airstore in terms 

of scalability. In contrast to Airstore, the MOUNT system stores and retrieves RDF triples 

annotated at several levels using the Hadoop environment. In addition, the MOUNT executes 

the queries independently of the inference engine. Compared to the Airstore method, which 

conducts the identical query at 16.7ms, the MOUNT system does it at 13.5ms over 8.1 million 

triples (Figure 3). In comparison to the GSA approach, the current Airstore method uses less 

time to execute until the number of triples reaches 5 million. After that, the Airstore method 

uses more time to execute than both the proposed MOUNT method and the existing Airstore 
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method. The reason behind this is that the Airstore method isn't able to extract the RDF triples 

that are relevant to the context, which makes processing time a burden.  

Figure 3: Number of triples Vs. Execution time 

Table 5: Number of triples Vs. Execution time 

Number of triples (millions) Execution time (ms) 

MOUNT Airstore GSA 

2.8 2.5 4 5 

4.8 8 10 11 

8.1 14 17 16 

10.5 19 23 22.5 

14 23 28 27 

By integrating big data, the MOUNT system not only determines the domain of the incoming 

data, but it also unifies structured and unstructured data into a single representation. 

Figure 4: Size of Input Data Vs. Execution Time 

Table 6: Size of Input Data Vs. Execution time 

Size of Input Data Execution time (sec) 

Both Unstructured Data Structured Data 

1 95 90 88 

2 100 96 92 

3 108 101 95 

4 116 110 104 

5 120 114 109 

 
Figure 5a Query Level Vs. Precision Table 
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Table 7a Query Level Vs. Precision 

Query Level Precision 

MOUNT Airstore GSA 

0.1 0.37 0.31 0.305 

0.3 0.39 0.34 0.33 

0.5 0.41 0.36 0.355 

0.7 0.46 0.39 0.385 

0.9 0.49 0.43 0.42 

Figure 5b Query Level Vs. Recall 

Table 7b Query Level Vs. Recall 

Query Level Recall 

MOUNT Airstore GSA 

0.1 0.93 0.89 0.88 

0.3 0.96 0.912 0.91 

0.5 0.965 0.925 0.92 

0.7 0.972 0.94 0.935 

0.9 0.98 0.95 0.945 

5.  SEASOR Approach: 

 Alirezaie Marjan and Amy Loutfi (2013) compared the SEASOR to three current methods—

CQELS, LSM, and SAAR—and their respective evaluation results are presented below.  

A. Result Accuracy 

Figure 6 Number of triples Vs. Result accuracy 

Figure 6 shows the SEASOR's performance in terms of result accuracy as the number of seasors 

and its triples are increased. By going from 40 to 50 seasors, it shows how semantic annotation 

affects the outcome. Under these conditions, every seasor records 0.035 million triples. Going 

from 0.035 million to 0.038 million triples causes a steady improvement in the result's 

accuracy. There is no discernible improvement in the precision of the results after the number 

of triples reaches 0.039 million. Accuracy is consistent and linear when tested at a certain 

interval utilising 40 seasors of the environment. The accuracy of the results remains unchanged, 

nevertheless, when the number of seasors is raised to 0.038 million triples. Table 8 displays the 

numerical data from Figure 6.  

                           Table 8: Number of Triples (millions)/seasors Vs. Result Accuracy 

Number of Triples 

(millions)/seasors 

Result Accuracy 

 40 seasors 50 seasors 

0.035 0.83 0.85 

0.036 0.845 0.862 

0.037 0.855 0.869 

0.038 0.863 0.8 

0.039 0.879 0.88 

0.04 0.88 0.88 
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B. Execution Time 

Figure 7: Number of triples Vs. Execution time 

Increasing the number of seasors and their triples increases the execution time of the SEASOR 

technique, as seen in Figure 7. Execution time is found to rise linearly with the number of 

seasors and their triples, as seen in the figure above. With 40 seasors and 0.04 million 

measurement triples, the SEASOR method takes 19.65 ms to run. With an increase of 50 

seasors and their triples to 0.04 million, the system's execution time drops to 26.90 ms. Figure 

7's numerical points are displayed in Table 9.  

Table 9: Number of Triples vs. Execution Time 

Number of Triples (millions)/seasors Execution Time (ms) 

40 seasors 50 seasors 

0.035 12.29 20 

0.036 13.25 21.5 

0.037 14.86 23.82 

0.038 15.58 24.52 

0.039 18 26.35 

0.04 19.65 26.90 

C.  Scalability 

Figure 8 Number of seasors Vs. Execution time 

As the number of contributing seasors increases, Figure 8 shows the execution time for the 

registered query. The performance of a system is evaluated as the number of contributing 

seasors is increased linearly from 50 to 250. In this case, the window size can be either 10 or 

100 pixels. The goal of changing the window size is to alter the number of seasor readings 

observed at a certain point during query processing. For example, if the window size is 10, it 

means that the ten most recent seasor values will be used for the query. The execution time 

ranges from 12.29 to 26.10 milliseconds when the window size is set to 10. Raising the window 

size to 100 lengthens the execution time. When using a window size of 100 and 250 seasors, 

the response time is 38.32 milliseconds. While processing the windows in parallel sequence, 

the SEASOR divides them into subwindows and processes them serially. As a result, when the 

window size is increased, the SEASOR technique takes more time to execute and uses fewer 

windows. In addition, it helps make the query result more accurate. Figure 8's associated values 

are shown in Table 10.  

Table 10: Number of seasors vs. Execution Time 

Number of Seasors Execution Time (ms) 

Window Size =10 Window Size =100 

50 13 25 

55 15.5 29 

60 19.5 33 

65 24 36 

70 38 38 
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5.1 The effect of annotation  

A. Result Accuracy 

Figure 9 Number of triples Vs. Result accuracy 

As shown in Figure 9 and Table 11, the accuracy of the SEASOR is measured by varying the 

amount of annotated features from minimum to maximum. Additionally, there have been 

anywhere from one million to two million triples. The effect of labelling the most extensive 

seasor features on the precision of the query results is shown. Accuracy is maximised when all 

seasor features are annotated to the triples.  

Table 11: Number of triples vs. Result Accuracy 

Number of triples (millions) Result accuracy 

Min FA Max FA 

1.0 0.97 0.99 

1.25 0.93 0.985 

1.50 0.88 0.9825 

1.75 0.843 0.9765 

2.0 0.817 0.97 

As the minimum number of annotated features lowers, the accuracy of the result also drops. 

Basically, the system still can't handle the complicated queries, even after annotating the seasor 

features. 

6. Conclusion  

This research compares the performance of two suggested semantic enrichment algorithms to 

numerous established methods on two datasets. Implementation scenario, hardware and software 

requirements, dataset, and assessment criteria were discussed. The proposed semantic enrichment 

approaches have shown performance improvement through evaluation results and proper 

description. 
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