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ABSTRACT 
This paper explores the use of wavelet transform techniques for feature extraction and 

classification of EEG signals in motor imagery (MI) tasks, focusing on the event-related 

desynchronisation (ERD) and event-related synchronisation (ERS) phenomena. The study 

highlights the effectiveness of Discrete Wavelet Transform (DWT) over Continuous Wavelet 

Transform (CWT) due to its efficiency in processing time and ability to compactly represent 

signals. Various wavelet functions, including Daubechies and biorthogonal wavelets, were 

evaluated based on their energy compaction properties and their ability to capture signal 

features relevant to MI. The wavelets that demonstrated the highest energy concentration in 

the approximation band were selected for further analysis. Features were extracted from the 

EEG signals using these selected wavelets and were characterized using statistical and  (HoS) 

measures such as mean, variance, skewness, and kurtosis. These features were then used to 

train a Support Vector Machine (SVM) classifier with different kernel functions. The 

classification results showed that the wavelets Jdb10 and Jbior6.8 provided the highest 

accuracy, suggesting they are the most suitable for EEG signal analysis in MI tasks. The 

findings demonstrate the potential of optimized wavelet-based feature extraction combined 

with advanced machine learning techniques for improving classification performance in 

brain-computer interface (BCI) systems. 
Keywords: Higher-order statistical, Support Vector Machine, EEG 

1. Introduction  

According to the research review, the signal's dispersion owing to motor imagery (MI) is both 

time- and frequency-domain dependent. According to previous research, the event-related 

desynchronisation (ERD) and event-related synchronisation (ERS) are two forms of 

attenuation that are created during the planning and execution of motor movements. ERD 

occurs in the µ band (8 to 12 Hz) and ERS in the central β band (13 to 28 Hz).When selecting 

a feature extraction tool, look for one that captures the underlying rhythm or changes in the 

features. Wavelet transform, as proposed in this chapter, is a popular technique with desirable 

qualities including time and frequency localisation and ease of implementation. Feature 

detection/extraction, pattern identification, and signal compression are just a few of the many 

uses for the versatile wavelet transform, which is made possible by its multi-resolution and 

energy compaction characteristics. Discrete wavelet transform (DWT) is better than 

continuous wavelet transform (CWT) due to its processing time. At each stage of 

decomposition, the DWT-based signal decomposition yields bands with wavelet coefficients, 

both approximate and detailed. Its usefulness in signal compression stems from the fact that it 

accurately represents the signal while simultaneously eliminating noise and duplication. In 

order to construct strong features from the underlying activity, it is possible to employ the 

same idea of efficient representation to capture the signal's uniqueness. One of the best things 

about this tool is the wide range of wavelet functions it offers for accurately describing 

signals. In order to prepare features, it is recommended in the literature to decompose EEG 

signals using empirical selection of Daubechies wavelets. The selection of the wavelet basis 

and the wavelet function requires a great deal of effort when employing the wavelet 

transform. The paper offers a potential method for selecting wavelet functions for the signal 

being tested. Moreover, this paper implies that the statistical representation of the wavelet 

coefficients, rather than passing them as features to the classifier, will serve as a powerful 

feature for classification. The robust features are a statistical and higher-order statistical 

depiction of the wavelet coefficients that were acquired by signal decomposition using the 

matching wavelet function. Kernel tuning for SVM classifier suggested by this work helps in 

excelling the performance of the system.  
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1.1.1 The Wavelet Transform   

In wavelet analysis, the mother wavelet is shifted and dilated to obtain a set of functions that 

are then used to represent signals linearly. A collection of coefficients known as wavelet 

coefficients is produced by signal decomposition. Discrete wavelet transforms (DWTs) are 

computerised ways of applying the wavelet transform. Separating the signal into its 

component parts, which include both rough and fine-grained coefficients, is what it does. The 

coefficients ψjk(t) and ϕjk(t), which are the orthonormal wavelet basis functions and the 

mother wavelet's translation and dilation, respectively, as stated in the equation 1.1 and 1.2, 

aid in the discrete expansion and decomposition of the signal x(t).  

ψ k(t) = 2 
−j 

ψ(2−jt − k)j, kϵZ                                                 (1.1) 

  ϕ k(t) = 2 
−j 

ϕ(2−jt − k)j, kϵZ                                                   (1.2) 

 

Equation 1.3 indicates the multiresolution analysis of the signal x(t), where Aj is the 

approximate coefficient and Dj is the detail coefficient at decomposition level j. 

𝑥(𝑡) = ∑𝑘=−∞
∞  𝐴𝑗(𝑘)𝜑𝑗,𝑘(𝑡) + ∑𝑗=𝐽

𝐼  ∑𝑘=−∞
∞  𝐷𝑗(𝑘)𝜓𝑗,𝑘(𝑡)                                                            

(1.3) 

Here in equation 1.4 we can get the detail coefficients for the ve-level of decomposition and 

the approximation of the signal's decomposition. 

x(t) = A5(t) + D5(t)+D4(t)+D3(t)+D2(t)+D2(t)+D1(t)                                         (1.4) 

1.2 Methods for Wavelet Function Selection: The signal-to-scaled-version-of-the-base-

wavelet similarity is the sole determinant of the wavelet basis function to be used for signal 

classification. The regularity, vanishing moments, and degree of shift variance are some of 

the characteristics of the wavelet band filter that are utilised for the selection of the wavelet 

basis. Mechanical signals make use of an alternative basis selection criterion, which is the 

greatest energy/Shannon entropy ratio. The minimal description length (MDL) principle is at 

the heart of quantitative methods proposed for wavelet basis function selection. There is a 

concentration of energy in the first few transform coefficients of correlated data, as proposed 

by David Salomon. In order to choose the appropriate wavelet function, this study employs a 

strategy that David Salomon developed for signal compression. Since the initial transform 

coefficients tend to build up in the approximate coefficient band following wavelet 

decomposition, this study suggests that the matching wavelet function be the one that 

accumulates the most energy in the approximation band following signal decomposition. 

Specifically, this study relies on the idea that the approximation band includes maximum 

energy if the correlation between the signal under test and the wavelet basis function is 

greater than.  Accordingly, this study recommends using wavelet on the signals to detect 

energy concentration in the approximate band and then choose a matching wavelet. 

Additionally, this study proposed that when applied to a signal using wavelet matching, 

bands that accept modulations caused by motor imagery will represent specific qualities. 

Efficient classification will be the result of this. To back up this claim, we can conduct an 

empirical study of different band energy wavelet functions. The literature favours daubechies 

and biorthogonal wavelets for biomedical signal applications. For this experiment, we choose 

all possible permutations of the Daubechies wavelet, an orthogonal wavelet, and a 

biorthogonal wavelet with a linear phase. 

1.3 Energy Accumulation in the Approximate Band: To determine wavelet energy, one 

uses wavelet coefficients, which depict the signal's temporal and frequency distribution. 

Equation 1.5, where A denotes the approximation coefficients and j is the level of resolution, 

gives the energy compactness in the approximate coefficient band. When choosing a wavelet 

function, it is helpful to compare their values for the signal's energy compression. 

                                                                       𝐸𝑗 = ∑𝑘  |𝐴𝑗(𝑘)|
2
                                                    (1.5) 

1.4 Statistical and Higher-order Statistical(HoS) Features: Mean, variance, and standard 

deviation are examples of second-order statistical variables utilised to characterise wavelet 

coefficients in this work. In accordance with equation 1.6, the mean provides information 
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about the data values located in the middle of the discrete collection of numbers, which in 

turn assesses the central tendency. The dispersion of the signal can be measured by 

calculating the variance and standard deviation. According to equation 1.7, data variance is 

the average squared distance from the mean (x) to each individual data value (xi). 

𝑥‾ =
∑𝑖=1

𝑛  𝑥𝑖

𝑛
                                    (1.6) 

𝜎2 =
∑𝑖=1

𝑛  (𝑥𝑖−𝑥‾)2

𝑛
                          (1.7) 

In equation 1.8, the standard deviation is obtained by taking the square root of the variance. 

By calculating the average distance between each data point in the collection and the mean, 

standard deviation provides a useful measure of the dispersion of the dataset's values around 

the mean. 

𝜎 = √
∑𝑖=1

𝑛  (𝑥𝑖−𝑥‾)2

𝑛
                                 (1.8) 

While the second-order statistics provided above do a good job of reflecting the features, they 

do a poor job of highlighting signal nonlinearities. In this case, a useful description might be 

higher-order statistics (HoS) that includes higher-order moments (m3, m4,... ) and cumulants, 

which are non-linear combinations of these moments. As seen in equation 1.9, skewness is a 

third-order cumulant that quantifies the degree to which a distribution is symmetrical or 

asymmetrical. The heavy-tailed/light-tailed distribution relative to a normal distribution is 

measured by kurtosis, a fourth-order cumulant, which can be expressed as equation 1.10. In 

this study, we propose these HoS features as a means of depicting the signal's dynamics. 

𝑏 =
1

𝑛
∑𝑗=1

𝑁   (
𝑥𝑗−𝑥‾

𝜎
)

3

                                     (1.9) 

𝑏 =
1

𝑛
∑ ⬚

𝑗=1

𝑁

  (
𝑥𝑗 − 𝑥‾

𝜎
)

4

                             (1.10) 

1.5 Classification Support Vector Machine: Vapnik established the foundational principles 

of Support Vector Machine (SVM) in 1995, and the method has since gained popularity 

owing to encouraging results in practical applications. With its generalisability, support 

vector machines (SVMs) outperformed 

more conventional neural networks. 

Instead of dividing the data into two groups, 

support vector machines (SVMs) maximise the 

margin, which is the distance between the 

margin and the nearest data point of each class. 

This produces an ideal separating hyperplane 

that generalises well, as illustrated in Figure 1.1.  

Figure 1.1: Support Vector Machine with Separating 

Hyperplanes 

1.6 Kernel Functions : Here, we apply the idea of kernel fooling  to a number of kernel 

functions that are detailed below.  

• The modest kernel function, denoted as linear kernel in equation 1.11, is defined in terms 

of two samples, x1 and x2, and a constant c.  
K (x1, x2) = xT x2 + c                                 (1.11) 

• A non-linear kernel that works well with normalised data is the polynomial kernel. 

Equation 1.12 gives the degree of the polynomial d, a constant c, and an equation with 

customisable parameters such as slope. 
(1.12) K (x1, x2) = (αxT x2 + c)d                                             

A radial basis function (RBF)—a type of 

Gaussian kernel—is defined by equation 1.13. To 

avoid under- or over- calculating the decision 

boundary, it is crucial to properly tune the parameter σ, 

which is critical for estimating the non-linearity of 

the kernel function. 

Figure 1.2: Selected electrodes for dataset 1 
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𝐾(𝑥1, 𝑥2) = 𝑒𝑥𝑝 (−
∥∥𝑥1−𝑥2∥∥2

2𝜎2 )                                                              (1.13) 

1.7 Description of Dataset 1: The Intelligent Data Analysis Group, Neurology Department, 

and Group of Neurophysics Berlin have created and made available the dataset 1. Subject 

data was recorded without their knowledge or consent. The subject's assignment was to use 

his index and little fingers to press the respective keys on the computer keyboard. Every key 

was pressed in the sequence and at my own pace. Each of the three sessions lasted for six 

minutes. All sessions were recorded on the same day, with short gaps in between, at a pace of 

1 key per second on average. Table Structure: With 130 milliseconds between key presses, a 

total of 416 epochs or trials of 500 milliseconds duration are at your disposal. For the sake of 

the competition, we have labelled 316 out of 416 epochs or trials as LHM (0 for left-hand 

movements and RHM 1) and 100 as unlabelled. A 100 Hz down sampled version of the 

original data is supplied, which was recorded with a sampling frequency of 1000 Hz. 

Technical information: To capture the data, a Neuro-Scan amplifier was utilised, along with 

an Ag/AgCl electrode cap. Figure 1.2 shows the 28 electrodes arranged in rows F, FC, C, and 

CP, with two additional placements O1 and O2 added, in accordance with the widely 

recognised 10/20 electrode placement scheme.2. The signals that were recorded were 

subjected to band-pass filtering, with a passband ranging from 0.05 to 200Hz. 

1.8 The Approach to the Suggested Program: Up to the level that separates the band of 

interest, the system suggests wavelet decomposition of the signal. Computing the 

approximate band energy is the first step in the empirical analysis for selecting wavelet 

functions. The matching wavelet function is the one that loads up the approximation band the 

most. The statistical and HoS features for a band of interest are generated using wavelet 

coefficients extracted using matching wavelets. The SVM classifier is fed the characteristics 

that have been retrieved, and its accuracy in classifying is measured using various kernel 

functions. 

1.8.1 Wavelet Decomposition : Important characteristics that pertain to fluctuations in 

mobility can be retrieved from the µ and β bands using ERD and ERS, respectively. 

Following the concept of motion, these occurrences are time-and frequency-limited. In order 

to differentiate the µ and β bands in the EEG signal that is being tested, which is sampled at a 

frequency of 100Hz, five levels of decomposition are needed, with the frequency ranges for 

each band being stated in Table 1.1.  

                                                        2−j−1Fs < ∆Fj < 2−jFs                     (1.14) 

Table 1.1: Wavelet decomposed band 

Wavelet band Frequency Range(Hz) 

D1 50-100 

D2 25-50 

D3 12.5-25 

D4 6.25-12.5 

D5 3.12-6.25 

A5 1.56-3.12 

1.8.2 Selection of Wavelet Functions : Popular mother wavelets for biological signals, such 

as Daubechies and biorthogonal, are used for investigation. Every version of the wavelet 

from db1 to db16, as well as biorthogonal wavelets bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, 

bior2.6, bior2.8, bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, bior6.8 are 

accessible in the MATLAB package that was used for the testing. We apply each wavelet to 

all the signals we're testing one by one until we have the approximate band energy. The 

energy that was produced by applying the daubechies wavelets to 20 signals and then 

calculating the average is given in Table 1.2 (page no. 259). There is some variation in the 

energy values of individual signals, but generally speaking, 90% of the signals exhibit a 

consistent pattern. Table 1.2 (page no. 259) shows the energy values for 20 signals; Table 1.3 

shows the average band energy for 316 signals, which is proportional to those values.Band 

energy was also calculated for 20 signals in Table 1.3 and is proportional to the average band 

energy using biorthogonal wavelets (316 signals, Table 1.5). Finally, matching the wavelet 
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with the underlying signal determines the energy concentration in the band. According to 

Table 1.3, the most energy is carried by Jdb10J, Jdb13J, Jdb14J, and J db15 J in the 

approximation band, while J bior2.8J, J bior3.1 J, J bior5.5 J, and J bior6.8 J were recognised in 

Table 1.5.  

1.8.3 Optimized Feature Extraction: Feature extraction follows signal decomposition using 

the chosen matching wavelet functions. The ipsilateral electrode is in charge of capturing 

ERS, while the contralateral electrode is responsible for obtaining ERD. In order to gather 

ERD and ERS of the signal, and thus the motor-related variability, the C3 and C4 electrodes 

cover the motor cortex of the brain, as shown in Fig. 1.3. Electrode C4 demonstrated superior 

performance when experimentally comparing the classification accuracy achieved by utilising 

the features from electrodes C3 and C4. For feature optimisation, we solely take into account 

signals from electrode C4, which collects ERD for LHM and ERS for RHM. After then, the 

optimisation keeps on by picking out the band that's important for ERD and ERS, as well as 

an approximate band from the wavelet-decomposed signal. These bands are used to extract 

statistical data (mean, variance, and standard deviation), HoS features (skewness and 

kurtosis), and wave energy. As a result, this method can enhance system performance by 

choosing an ideal feature set that accounts for the MI variances. 

Table 1.3: Average Approximate Band Energy for Daubechies wavelets 

Daubechies wavelets Average Band Energy 

db1 51.20994 

db2 65.18798 

db3 69.74599 

db4 71.78429 

db5 73.28987 

db6 74.33134 

db7 74.6944 

db8 74.58228 

db9 74.9237 

db10 75.25192 

db11 74.96743 

db12 75.0679 

db13 75.32244 

db14 75.55061 

db15 75.38548 

Figure 1.3: Electrodes Covering Motor Cortex 

1.8.4 Classifier and Evaluation Measures :Though SVM is primarily a linear classifier, it 

may be "kernel tricked" to work with nonlinear bounds. Although it increases the classifiers' 

complexity slightly, it is helpful for mapping data with significantly greater dimensions. The 

support vector machine (SVM) is trained using 158 of the 316 available signals, while the 

other 158 are utilised for testing purposes. In this study, various kernels were examined, 

including the quadratic, MLP, polynomial, and Gaussian (RBF) kernels. To make sure the 

classifier doesn't get overfit, we use threefold cross-validation during training. 

1.9 Results from Experiments :From the Daudechies family, we chose eight wavelets— J 

db10J, J db13 J, J db14 J, and J db15 J —and from the biorthogonal family, we chose J bior2.8 J, 
J bior3.1 J, J bior5.5 J, and Jbior6.8 J —based on quantitative study of approximate band 

energy. In order to build statistical and HoS features, the coefficients of the wavelets that 

were used to decompose the signals from electrode C4 are utilised. Using these features, we 
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train and test an SVM classifier using linear, Gaussian, polynomial, quadratic, and multilayer 

perceptron kernel functions; we then measure the system's performance by looking at its 

classification accuracy. According to Table 1.8, the highest classification accuracy achieved 

for J db10 J with the MLP kernel function is 83%. For the vast majority of kernel functions, 

Wavelet J db10 J asserts the highest level of classification accuracy. Since Jbior6.8 asserts 

high classification accuracy across the board for all kernel functions, it might be thought of as 

the matching wavelet as well.  

              Table 1.5: Average Approximate Band Energy for Biorthogonal Wavelets 

Biorthogonal wavelets Approximate Band Energy 

bior1.1 51.20994 

bior1.3 66.01561 

bior1.5 71.41573 

bior2.2 72.00769 

bior2.4 75.81602 

bior2.6 77.83013 

bior2.8 78.59862 

bior3.1 78.49326 

bior3.3 70.9335 

bior3.5 72.86749 

bior3.7 74.2057 

bior3.9 74.53814 

bior4.4 77.86559 

   bior5.5  81.09622 

bior6.8 81.57216 

                               Table 1.6: Classification Accuracy for Different Kernel Functions 

Wavelet 

Function 

Linear MLP Quad. Gaus. Poly. 

bior2.8 81.71 81.71 77.56 77.56 78.67 

bior3.1 77.56 77.56 74.51 77.56 77 

bior5.5 78.39 78.39 78.67 80.05 79.5 

bior6.8 80.55 80.55 80.62 81.16 80.37 

db13 80.45 80.45 78.39 79.77 79.5 

db10 81.6 81.6 80.6 82.32 81.8 

db14 78.67 78.67 80.33 80.33 79.77 

db15 77.56 77.56 74.51 77.83 76.73 

1.9.1 Results for daubechies wavelets : Electrode C4's signal, which is being processed, 

gathers ERD for LHM and ERS for RHM. There is no way to properly categorise RHM and 

LHM without including ERD and ERS. As shown in Table 1.7 for Jdb10J, this rationale leads 

to the proclamation of distinct Classification Accuracy for LHM and RHM when the signal is 

acquired from a particular electrode. With the quadratic kernel, Wavelet achieved an average 

accuracy of 82.32% and a classification accuracy of 83.83% for RHM and 81.19% for LHM, 

respectively. The notion that ERD and ERS provide similarly powerful features is supported 

by the fact that, when taking into account additional kernel functions, the classification 

accuracy gap between RHM and LHM is less than 2%. Table 1.8 shows that for J db13J, the 

classification accuracy for RHM with a linear kernel was 83.83%, while the average accuracy 

was 80.45%, and similar fluctuations were noted for the other wavelets that were used.  

Table 1.7: Classification Accuracy for db10 

SVM Kernel LHM RHM Average(%) 

Linear 80.91 82.29 81.6 

Quadratic 81.59 79.79 80.69 

MLP [1 -6] 80.91 82.29 81.6 

Gaussian(rbf ) 81.19 83.83 82.32 
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Polynomial 1 80.77 82.82 81.8 

                                    Table 1.8: Classification Accuracy for db13 

SVM Kernel LHM RHM Average(%) 

Linear 79.14 83.83 80.45 

Quadratic 76.68 79.79 78.39 

MLP [3 -2] 79.75 83.83 80.45 

rbf [2] 83.33 75.46 79.77 

Polynomial 1 79.14 81.83 79.5 

                                       Table 1.9: Classification Accuracy for db14 

SVM Kernel LHM RHM Average(%) 

Linear 76.6871 80.303 78.67 

Quadratic 77.3006 83.3006 80.33 

MLP [1 -6] 74.2331 83.8384 78.67 

Rbf [2] 70.5521 88.3838 80.33 

Polynomial 1 76.6871 80.303 79.77 

Table 1.9 shows that the average accuracy drops to 79.77% when using the quadratic and 

RBF kernel for RHM with the wavelet Jdb14J, although the classification accuracy remains at 

83.33%. When comparing ERD caused by RHM to ERS caused by LHM on C4, this wavelet 

function provides a more accurate representation. 

Although the average accuracy is lower than 80% in Table, the wavelet Jdb15J achieves a 

classification accuracy of 84.84% using the Gaussian (RBF) kernel for RHM.  

1.9.2 Biorthogonal wavelet results :Jbior3.1J achieves a RHM classification accuracy of 

80.3% and an average MLP and Gaussian kernel accuracy of 77.56% (Table 1.11 shows 

results for biorthogonal versions). Using Jbior3.1J for decomposition, practically all kernel 

functions assert that RHM outperforms LHM in terms of classification accuracy. Table 1.12 

shows that when decomposed using J bior2.8 J, the classification accuracy for LHM is just 

63.19%, while the Gaussian kernel achieves an impressive 89% for RHM.  

                                            Table 1.10: Classification Accuracy for db15 

SVM Kernel LHM RHM Average(%) 

Linear 75.4601 79.2929 77.5623 

Quadratic 71.7791 76.7677 74.5152 

MLP [1 -6] 77.3006 74.7475 75.9003 

rbf [2] 69.3252 84.8485 77.8393 

Polynomial 1 75.4601 79.2929 77.5623 

                                 Table 1.11: Classification Accuracy for bior3.1 

SVM Kernel LHM RHM Average(%) 

Linear 73.61 80.8 77.21 

Quadratic 73.23 76.07 74.51 

MLP [1 -2] 74.23 80.3 77.56 

rbf [2] 74.23 80.3 77.56 

Polynomial 1 73.61 80.8 77 

                                     Table 1.12: Classification Accuracy for bior2.8 

SVM Kernel LHM RHM Average(%) 

Linear 74.23 85.35 81.71 

Quadratic 75.46 79.29 77.56 

MLP  74.84 85.86 81.77 

rbf  63.19 89.39 77.56 

Polynomial 1 74.23 85.35 78.67 

1.10 Conclusion  

Independent BCI with MI as a possible input signal employs efficient signal processing 

techniques with the aim of incorporating additional motor motions. Choosing the most 

appropriate wavelets becomes much easier with the use of a band energy-based wavelet 
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selection method. The wavelets from the Daubechies family (J db10 J, J db13 J, J db14 J, and J 

db15 J) and the biorthogonal family (J bior2.8 J, J bior3.1 J, J bior5.5J, and J bior6.8 J) are 

chosen based on their high band energies. The signal from electrode C4, which corresponds 

to the ERD of LHM and the ERS of RHM, is utilised for processing out of the 28 electrodes 

that are available. Applying chosen wavelets allows for the extraction of wavelet coefficients 

from the signals. The signal's dynamics can be represented by HoS features skewness and 

kurtosis, which are second-order statistical features. The classifier, after receiving the 

extracted features, evaluates them using a variety of kernels, including linear, polynomial, 

quadratic, and multi-layer perceptron. According to the results of the Classification Accuracy 

calculations using the chosen wavelets, J bior6.8 J and J db10 J are the best fit. The average 

classification accuracy for Wavelet Jbior6.8 J is 82.01%, whereas for J db10 J it is 83%. Signal 

modelling and enhancing the machine learning utilised by the classifier can further enhance 

classification accuracy. The goal of this work is to apply an optimised method for extracting 

features from specific EEG signals. When developing autonomous BCIs based on MI, the 

suggested system will be useful. 
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Table 1.2: Approximate Band Energy for Daubechies Wavelets 

Signal db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 db11 db12 db13 db14 db15 

1 67.45 90.69 91.48 91.1 94.08 95.16 94.33 95.01 95.98 95.84 94.76 95.17 95.72 95.83 95.46 

2 56 69.53 73.38 78.43 77.16 81.65 85.45 85.77 85.42 87.08 89.1 89.64 89.44 90.49 91.98 

3 24.1 20.9 17.34 28.73 23.95 17.69 23.4 28.7 28.04 32.27 38.95 43.09 43.61 48.39 52.91 

4 34.49 34.79 33.06 36.16 34.29 24.64 25.98 28.15 27.98 28.53 37.38 42.84 43.08 42.32 45.77 

5 76.3 83.8 84.18 86.98 84.78 82.98 85.18 86.59 85.1 84.33 86.49 87.57 86.54 85.49 86.06 

6 25.67 60.03 57.71 53.34 59.64 58.23 58.56 52.08 53.27 49.83 48.82 48.52 54.41 52.52 55.14 

7 32.25 76.29 80.98 85.09 85.68 83.77 81.55 77.7 73.97 72.54 70.22 67.75 64.3 60.06 55.21 

8 16.35 36.77 45.48 38.58 33.93 39.11 40.1 37.32 33.91 35.02 29.87 29.32 28.3 29.49 30.38 

9 64.81 81.11 82.19 83.63 83.11 83.5 85.04 85.09 84.23 85.03 85.52 85.39 84.88 85.82 87.19 

10 64.21 75.38 80.13 81.65 86.89 88.78 88.77 88.58 90.54 90.57 89.76 88.8 89.5 89.23 87.46 

11 46.41 68.09 62 56.81 62.34 57.93 55.44 59.64 56.2 52.42 56.59 57.71 54.59 54.86 56.69 

12 58.51 92.16 90.55 92.74 95.11 95.16 94.44 95.35 96.27 96.09 95.32 95.61 95.88 95.16 94.29 

13 77.77 87.19 87.91 88.36 89.11 90.57 91.06 91.66 91.94 92.7 93.31 93.59 93.98 94.46 94.53 

14 56.6 62.01 55.17 50.64 54.47 54.84 50.66 51.87 55.74 56.3 50.69 51.67 55.65 56.13 54.97 

15 55.87 79.82 68.61 74.92 84.61 77.89 69.08 73.95 77.96 72.83 68.44 72.11 73.09 69.86 69.84 

16 55.86 74.1 77.66 78.73 79.71 79.16 82.65 84.09 84.58 86.81 86.35 86.52 86.36 86.13 85.66 

17 36.29 56.87 58.41 57.13 60.63 60.34 62.77 60.62 63.76 62.06 55.15 52.38 59.08 61.27 61.19 

18 41.12 21.82 24.81 42.39 34.36 25.25 33.17 31.51 21.75 18.86 24.03 23.61 18.73 18.22 21.2 

19 67.84 75.21 77.08 82.41 84.89 80.78 76.32 73.48 67.64 62.82 65.68 66.57 64.98 60.03 61.22 

20 18.88 50.18 64.01 66.08 68.35 75.56 77.18 77.44 76.08 79.89 77.15 75.07 72.37 78.61 74.51 

Average 

Band 

Energy 

48.84 64.84 65.61 67.69 68.85 67.65 68.06 68.23 67.52 67.09 67.18 67.65 67.72 67.72 68.08 
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Table 1.4: Approximate Band Energy for Biorthogonal Wavelets 

Signa

l 

bior1.

1 

bior1.

3 

bior1.

5 

bior2.

2 

bior2.

4 

bior2.

6 

bior2.

8 

bior3.

1 

bior3.

3 

bior3.

5 

bior3.

7 

bior3.

9 

bior4.

4 

bior5.

5 

bior6.

8 

1 67.45 82.99 87.96 89.99 91.02 91.62 92.19 88.42 86.25 89.67 91.61 92.47 93.67 95.7 94.91 

2 56.0 71.67 69.41 74.25 69.54 75.91 79.84 96.34 71.44 65.67 72.18 75.17 76.0 82.81 83.96 

3 24.1 29.91 32.12 26.43 34.5 35.62 30.91 56.83 45.94 47.58 41.98 34.66 26.9 22.98 27.23 

4 34.49 34.82 33.34 46.48 43.83 37.67 31.81 76.02 63.36 53.9 47.2 34.39 37.97 36.26 31.45 

5 76.3 85.05 86.12 82.92 83.85 84.32 86.25 85.14 84.88 82.55 84.98 85.59 88.57 91.86 90.54 

6 25.67 64.53 69.88 68.23 68.93 72.01 77.06 91.44 72.7 69.98 75.15 79.49 75.11 82.18 83.27 

7 32.25 81.28 87.07 80.88 84.6 86.04 83.32 66.68 75.71 78.05 76.25 69.84 86.99 90.03 87.71 

8 16.35 31.52 31.75 61.67 55.89 56.1 55.77 74.19 41.08 42.86 47.2 49.11 53.13 54.67 55.76 

9 64.81 84.99 87.14 85.35 87.29 88.57 90.39 90.57 87.17 87.96 89.47 89.2 90.92 93.54 92.97 

10 64.21 66.65 75.52 74.91 80.31 84.65 87.07 72.59 63.39 64.35 70.22 75.83 85.13 89.7 90.37 

11 46.41 56.59 59.86 70.71 70.58 70.77 70.07 68.33 73.99 70.82 70.25 69.34 71.73 75.82 73.72 

12 58.51 90.25 92.56 89.76 91.48 93.44 94.17 98.24 90.78 91.4 94.53 94.11 93.61 95.53 95.63 

13 77.77 83.93 87.35 85.08 88.73 90.37 91.6 77.14 85.84 85.78 86.75 88.82 91.9 94.39 93.8 

14 56.6 47.46 50.78 59.87 59.63 55.74 54.74 64.95 58.32 49.15 45.53 42.07 60.73 60.24 57.06 
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