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Abstract 
machine learning has two phases: training and testing. In the training phase, a set of examples 

(i.e., data with their corresponding labels) are available. With a given machine learning 

algorithm, the example data are used to train a model (i.e., tune its parameters) so that it can 

identify the relationship between input data and the labels. In the testing phase, input data 

without labels go through the same methodology as the training phase for preprocessing, 

feature extraction, and feature reduction, and a trained model, which was estimated during 

training phase, predicts the output (i.e., labels). The main objective during the training phase is 

to estimate a model that has maximal predictive performance at the time of testing. 
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Introduction 
Electroencephalography is a noninvasive method to directly measure neural activity from 

electrodes placed on the scalp [1]. Synchronous activity of a large population of neurons 

generates an electric field that is strong enough to reach the scalp, which is recorded as the 

electroencephalogram (EEG) with a high temporal resolution [2]. Directly recording neural 

activity is one of the advantages of EEG compared to other neuroimaging methods, such as 

functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy 

(fNIRS), which measure biochemical activity as a proxy for neural activity [3, 4]. Moreover, 

due to its high temporal resolution, EEG captures a wide range of neural oscillations. These 

rhythms have been categorized into five standard bands: delta (0.5–4 Hz), theta (4–8 Hz), 

alpha (8–12 Hz), beta (13–30 Hz), and gamma (>30 Hz) [5]. Studies have shown that brain 

activity in each frequency band is associated with different cognitive functions [5]. These 

advantages make EEG a viable and practical option to investigate important questions in not 

only neural engineering and neuroscience but also clinical applications and disease diagnosis. 

EEG signals contain a substantial amount of information with respect to spatial, temporal, 

and spectral aspects. This makes EEG a suitable method to investigate various aspects of 

brain function and cognition. However, the richness of EEG [5] comes at a cost, where data 

can be high dimensional and may have a low signalto-noise ratio, which poses a considerable 

challenge to process EEG and identify patterns of interest. Machine learning has received 

considerable attention in the field to address the inherent challenges of EEG. EEG is usually 

contaminated with noise and artifacts, such as eye movement, slow drift, and muscle artifact 

[6]. To increase the signal-to-noise ratio, a preprocessing step is commonly included to 

minimize artifacts and reduce unwanted noise. This step can include various procedures such 

as band-pass filtering [7], artifact subspace reconstruction [8], independent component 

analysis, spatial filters, minimizing muscle artifact, and artifact rejection [3]. In 

preprocessing, however, one has to be cautious and visualize data to avoid eliminating any 

meaningful and informative component of EEG 

Applications  
An immense amount of research has focused on machine learning in EEG-based systems. 

There are numerous applications for EEG-based machine learning. An important application 

is to use machine learning to identify and extract biomarkers from EEG for neurological 

disorders, such as Alzheimer’s disease [5], Parkinson’s disease [6], epilepsy and epileptic 

seizures [4], and dementia [7]. Other applications of machine learning in EEG include brain-

computer interface (BCI) [8], sleep staging [5], drowsiness detection [6], estimation of depth 

of anesthesia [4], and microsleep detection and prediction [2]. Despite different applications, 

implementation of the machine learning procedure in these EEG systems follows similar steps 

as described in this chapter. For the rest of this section, we provide further details for two 

applications of machine learning in EEG. These are brain-computer interface (BCI) and 

microsleep detection and prediction. References: 
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Brain-Computer Interface  

A BCI system enables users to interact with their surrounding using brain activity [6]. BCI 

systems are of particular importance for people with severe disabilities, where BCI systems 

empower them to control their prosthetics and/or environment without using any muscles or 

peripheral nerves [5]. These systems commonly use EEG to record electrical activity of the 

brain because EEG is lowcost, has high temporal resolution, and has a low associated risk [4, 

2]. One class of BCI systems focuses on motor imagery [2]. In this paradigm, a participant 

mentally simulates performing a series of movements. The aim of the BCI system is then to 

distinguish different types of movements using brain activity. Several studies have 

investigated motor imagery BCI and have achieved relatively acceptable performances (e.g., 

[5]). Using a similar concept, other systems have been developed to control robotic arms and 

unmanned aerial vehicles [6]. In these systems, a diverse range of feature extraction methods 

have been employed, including CSP [7], coefficients of wavelet transform [8], spectral 

features [159], convolutional neural networks [6], and autoencoder [1]. Additionally, a range 

of classifiers have been used to separate motor imagery tasks, such as LDA [7], SVM [4], 

kNN [8], ensemble classifier [6], naive Bayes [6], and deep neural networks [6]. P300 speller 

is another paradigm of BCI [4]. In the P300 speller, participants are presented with a table of 

characters where the intensity of one row or column is randomly increased. Participants are 

instructed to focus on the letter of interest, which randomly gets highlighted. This change in 

intensity produces a reaction in brain activity of the participant which happens approximately 

300 ms after the letter is highlighted – i.e., P300. Using the P300 pattern, a BCI system can 

identify the letter of interest. The P300 speller paradigm has been widely studied in the 

literature and has achieved relatively good performances (e.g., [6]). Several classifiers have 

been used to identify the letter of interest in a P300- speller paradigm, such as LDA [8], SVM 

[9], deep neural networks [5], ensemble classifier [7], and random forest [3]. There are other 

BCI paradigms such as steady-state visual evoked potential (SSVEP), auditory, visual, and 

hybrid [2]. These paradigms have also been the subject of many studies (e.g., [8]). There are 

numerous studies investigating different BCI paradigms, and the number of publications is 

increasing. The findings of these studies show a promising future to improve quality of life 

for those who suffer from severe neurological and musculoskeletal disorders. 

Microsleep Detection and Prediction in Time  

The prediction of imminent microsleeps has also been the subject of several studies [8]. In 

these studies, selection of the EEG window corresponding to a microsleep state was done in 

a manner so that the EEG window preceded its corresponding microsleep state by a certain 

amount of time [5]. In terms of performance, microsleep detection and prediction systems 

have achieved relatively high AUC-ROC values (e.g., 0.95 [7]). However, the precision of 

these systems is relatively low (e.g., 0.36 [8] and 0.42 [1] for microsleep prediction 0.25 s 

ahead). One of the challenges associated with microsleep systems is that microsleep data has 

an inherently high class imbalance. Additionally, the class-imbalance ratio varies across 

individuals. This introduces complexity for training the system and evaluating its 

performance. 

Conclusion  
An immense amount of research has focused on EEG and its applications in medicine, 

neuroscience, rehabilitation, and other fields. Integration of the EEG and machine learning 

fields has provided a framework to develop accurate EEG-based predictive systems. Such 

advances have resulted in EEG-based BCI systems that can substantially improve the quality 

of life for those suffering from severe neural and neuromuscular disorders. In this chapter, we 

have provided an overview of machine learning algorithms for EEG-based systems. We 

divided the process into EEG data acquisition, preprocessing, feature extraction, feature 

reduction, classification, and performance evaluation. For each step, a brief summary was 

provided and potential challenges were discussed. However, the field of machine learning is 

vast, and therefore this chapter makes no attempt to review all of the existing literature. 

Instead, we have provided an overview of different steps that can be combined to develop an 

EEGbased predictive system. We consider that machine learning will play an increasingly 
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important role in EEG-based systems and their applications. In particular, deep neural 

networks will become an increasingly popular choice to develop EEG-based systems. These 

methods provide a framework to benefit from both model-based and data-driven approaches, 

which requires minimal processing for EEG data. 
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