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Abstract 
With the rapid advancement of digital image editing tools, manipulating images has become 

easier than ever. Among various tampering techniques, image splicing—where segments from 

one or more images are combined into a single composite—remains a prominent method of 

forgery. The implications of such forgeries are significant, particularly in sensitive domains 

like journalism, forensics, and social media, where image authenticity is paramount. The 

growing accessibility of image editing tools has made image splicing a prevalent method of 

forgery, posing challenges for detection.Passive image forgery detection has gained 

significant attention in recent years due to the rapid advancements in digital image editing 

tools. Among various forgery techniques, image splicing remains a common method for 
tampering. Detecting image splicing presents substantial challenges. This paper proposes a 

novel algorithm combining deep learning and wavelet transform for spliced image detection. 

A Convolutional Neural Network (CNN) is utilized for automatic feature extraction, followed 

by Haar Wavelet Transform (HWT). Support Vector Machine (SVM) is then employed for 

classification. Additionally, experiments replace HWT with Discrete Cosine Transform 

(DCT), followed by Principal Component Analysis (PCA). The algorithm is evaluated on 

public datasets (CASIA v1.0 and CASIA v2.0) and demonstrates high accuracy with a 

compact feature vector. Results confirm the effectiveness of the proposed approach in 

detecting spliced images with improved performance. 
Key Words: Image Splicing Detection, Passive Forgery Detection, Convolutional Neural 

Network (CNN), Haar Wavelet Transform (HWT), Discrete Cosine Transform (DCT), Support 

Vector Machine (SVM). 

Introduction 

The widespread availability of modern image editing tools, such as Adobe Photoshop, has 

made digital image manipulation more accessible than ever. While modifying digital images 

is easy, confirming their authenticity using visual inspection alone is challenging. This has 

elevated image forgery detection to a critical and active area of research. Digital image 

forensics employs two primary techniques: active and passive methods. Active techniques 

involve embedding watermarks or digital signatures into images at the time of their creation. 

Authentication is verified by matching the extracted watermark with the original. However, 

these methods require specialized cameras and pre-processing during image acquisition, 

limiting their applicability. Conversely, passive techniques do not rely on prior information 

about the image and are capable of authenticating images based solely on their content [1]. 

Among passive methods, image splicing—a form of forgery where regions from one or more 

images are combined to create a tampered image—is particularly prevalent. Spliced images 

often appear seamless, making their detection a complex task. image splicing, where two 

original images Forged images created through splicing can have far-reaching consequences, 

including malicious use that may lead to irreversible harm to society. Existing algorithms for 

detecting image splicing forgery often rely on high-dimensional feature vectors, which can 

increase computational complexity and reduce efficiency. In this paper, we propose a novel 

algorithm for detecting spliced image forgery, leveraging a deep learning approach based on 

Convolutional Neural Networks (CNN). CNNs are widely used in deep learning due to their 

ability to simultaneously perform feature extraction and classification within the same 

network. The convolutional layers in CNNs are optimized during training, reducing the need 

for manual feature engineering. Additionally, CNNs require fewer internal connections, 

making them computationally efficient [1] [2]. 

The contributions of this paper include the following: 

1. Proposing a CNN-based splicing detection algorithm that employs Haar Wavelet 

Transform (HWT) for feature refinement. 

2. Exploring alternative configurations, including the use of Discrete Cosine Transform 
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(DCT) and Principal Component Analysis (PCA). 

II. Related Work 

Over the years, numerous passive images splicing detection algorithms have been proposed, 

broadly categorized into three types based on their feature extraction techniques: Local Binary 

Pattern (LBP), Markov models, and deep learning. 

1. Local Binary Pattern (LBP)-Based Methods 

LBP is widely employed for feature extraction in tampered image detection [2. 3]. 

Han et al.: Proposed a method for extracting Markov features using a maximization and 

thresholding strategy. Their approach reduces feature dimensionality while maintaining 

classification accuracy, making it computationally efficient for splicing detection. 

Bayar et al.: Designed a novel convolutional layer specifically for detecting universal image 

manipulations. The deep learning-based approach utilizes a fine-tuned Convolutional Neural 

Network (CNN) that eliminates traditional pre-processing steps, resulting in higher accuracy 

across diverse manipulation types. 
Zhao et al.: Utilized a 2D non-causal Markov model for passive splicing detection. This 

method captures dependencies among neighboring pixels in both horizontal and vertical 

directions, offering enhanced detection performance in spliced image areas. 

Saleh et al.: Presented an approach using Multi-scale Weber Local Descriptors (WLD) for 

feature extraction. Their method applies WLD at multiple scales, capturing both fine and 

coarse features, which are then classified using SVM for effective forgery detection. [2] [3] 

[4] [5]. 

2. Markov Model-Based Methods 

Markov models are extensively used for splicing detection by analyzing spatial and frequency 

domain features. 

• In [4], spatial features were extracted by analyzing pixel differences in multiple directions, 

while frequency domain features relied on DCT coefficients. PCA reduced feature 

dimensionality, and SVM with Gaussian RBF kernel classified spliced images. 

• An algorithm [5] utilized Quaternion DCT (QDCT) for feature extraction. QDCT was 

applied to RGB color blocks, computing directional features for histogram-based SVM 

classification. 

• In [4.5], Markov models extracted features from maximum pixel values in DCT. 

Even-odd Markov models reduced complexity, but these methods remain computationally 

intensive. 

3. Deep Learning-Based Methods 

Deep learning methods have emerged as powerful tools for image splicing detection. 

• Ying et al. [6] proposed a two-stage approach using Stacked Auto-Encoder (SAE). 

Wavelet-transformed patches were analyzed, and contextual information integration 

improved accuracy. However, limited hidden layers reduced feature extraction efficiency. 

• A universal forensic method [5,6] employed a CNN with two convolutional and 

max-pooling layers and three fully connected layers, achieving better feature 

representation. 

• In [7], a CNN with six convolutional and three max-pooling layers extracted features. PCA 

reduced feature dimensionality, and SVM performed final classification. 

Deep learning techniques outperform traditional methods by automatically extracting robust 

features but often require computational resources and complex architectures. 

III. The Proposed Algorithm 

The primary goal of this work is to enhance image splicing detection through a deep learning 

approach. The block diagram of the proposed algorithm is illustrated in Fig. 2. Deep learning 

utilizes multi-layer neural networks where the output of one layer serves as the input for the 

next layer. Among various deep learning models, Convolutional Neural Network (CNN) has 

proven effective for automatic feature extraction and classification tasks. 

A. Overview of the Algorithm 

The proposed algorithm employs a CNN for feature extraction, followed by Haar Wavelet 

Transform (HWT) for dimensionality reduction and Support Vector Machine (SVM) for final 
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classification. The algorithm determines whether an image is spliced or original. 

B. CNN Architecture 

The CNN architecture in this work comprises six convolutional layers and three pooling 

layers, as shown in Fig. 3. It processes an input layer of dimensions 227×227×3227 \times 

227 \times 3227×227×3 (representing 227×227 image patches with three color channels). Key 

operations in CNN include convolution, non-linearity (activation), and pooling. 

• Convolutional Layer: Extracts spatial and temporal features by applying filters across the 

image. 

• Non-Linearity Layer: Introduces activation functions (e.g., ReLU) to add non-linear 

properties. 

• Pooling Layer: Reduces the spatial dimensions of the feature maps, retaining essential 

information while decreasing computational complexity [7] [8] [9]. 

The CNN is characterized by sparse connectivity and weight sharing, which makes it 

computationally efficient compared to traditional fully connected networks. The output 
volume (W2×H2×F) (W_2 \times H_2 \times F) (W2× H2× F) is computed using the 

following equations: 

W2=W1−F+2PS+1(1)W_2 = \frac {W_1 - F + 2P} {S} + 1 \tag {1} W2 =SW1− F+2P +1(1) 

H2=H1−F+2PS+1(2)H_2 = \frac {H_1 - F + 2P} {S} + 1 \tag {2} H2 = SH1− F +2P + 1(2) 

Where W1W_1W1 a n d  H1H_1H1 a r e  the input width and height, FFF is the filter size, 

PPP is the padding, and SSS is the stride. 

C. Algorithm Flow 

1. Feature Extraction with CNN: The input image is processed through the CNN layers to 

extract high-level features such as edges, textures, and shapes. 

2. Dimensionality Reduction with HWT: Haar Wavelet Transform is applied to reduce 

feature dimensionality while retaining critical information. 

3. Classification with SVM: Finally, the reduced feature set is fed into an SVM classifier to 

determine whether the image is spliced or original. 

This combination of CNN, HWT, and SVM ensures high accuracy while maintaining 

computational efficiency. 

A. Convolution Layer 

The convolution layer is the foundational layer in CNN, responsible for feature extraction. 

Key parameters of the convolution layer include: 

• Stride: Determines how far the filter moves across the input image. Common values are 

(1, 1), (2, 2), and (4, 4). 

• Padding: Involves adding zeros to the borders of the input image to maintain spatial 

dimensions or improve edge feature extraction. 

• Filter Size: Defines the dimensions of the kernels applied to the input image. 

In the proposed algorithm, six convolution layers are implemented. As depicted in Figure 3: 

• Conv1: Features 96 kernels of size 11×1111 \times 1111×11. 

• Conv2 and Conv5: Feature 256 kernels, with sizes 5×55 \times 55×5 and 6×66 \times 

66×6, respectively. 

• Conv3 and Conv4: Feature 384 kernels, each of size 3×33 \times 33×3. 

• The final convolution layer outputs feature maps of size 1×1×40961 \times 1 \times 

40961×1×4096 using a kernel size of 6×66 \times 66×6, stride S=2S=2S=2, and padding 

P=0P=0P=0. 

After each convolution layer, the Rectified Linear Unit (ReLU) activation function is 

applied to introduce non-linearity. ReLU outputs 000 for negative pixel values and xxx (the 

pixel value) for positive ones. Compared to traditional activation functions like tanh or 

sigmoid, ReLU is computationally simpler, faster for large datasets, and improves model 

convergence [8] [9] [10]. 

Following several ReLU layers, pooling layers are introduced to reduce feature 

dimensionality and computational complexity. The two common types of pooling are: 

• Max Pooling: Retains the maximum value within a pooling region, preferred for its speed 

and efficiency. 
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• Average Pooling: Computes the average value, though less commonly used. 

In the proposed architecture, three max-pooling layers are employed (Figure 3), using filters 

of size 3×33 \times 33×3, stride 2, and padding 0. 

B. Wavelet Transforms 

Wavelet transforms are used to convert an image from the spatial domain to the frequency 

domain, facilitating multi-resolution analysis [10]. Among various types of wavelet 

transforms, the Haar Wavelet Transform (HWT) is utilized in this algorithm due to its 

simplicity, memory efficiency, and computational speed. 

HWT generates a two-dimensional array comprising four sub-bands: 

• LL (Low-Low): Represents low-frequency components in both rows and columns. 

• HL (High-Low): Represents high-frequency components in rows and low-frequency 

components in columns. 

• LH (Low-High): Represents low-frequency components in rows and high-frequency 

components in columns. 
• HH (High-High): Represents high-frequency components in both rows and columns. 

HWT reduces the feature size from 4,096 to 1,024, significantly optimizing the computational 

load. 

C. Principal Component Analysis (PCA) 

PCA is a widely used technique for dimensionality reduction, transforming high-dimensional 

data into a lower-dimensional representation while preserving essential information [20]. 

The four-step process of PCA includes: 

1. Normalization: Standardizing the data to ensure uniformity. 

2. Covariance Matrix Calculation: Measuring the relationships between variables. 

3. Eigen Decomposition: Computing eigenvectors and eigenvalues from the covariance 

matrix to identify principal components. 

4. Transformation: Mapping the original data into a new feature space defined by the 

principal components. 

V. Experimental Results 

To evaluate the performance of the proposed algorithm, a series of experiments were 

conducted. The proposed CNN model was implemented using MATLAB R2016b with the 

Caffe deep learning framework. This section is structured as follows: 

• Subsection A provides a description of the datasets used. 

• Subsection B outlines the evaluation metrics employed. 

• Subsection C discusses the experimental results. 

A. Datasets Description 

Two publicly available datasets, CASIA v1.0 [21] and CASIA v2.0 [11, 12], were used to 

evaluate the algorithm. These datasets are widely recognized benchmarks for spliced image 

detection [12, 13]. 

• CASIA v1.0: Contains 1,721 images, including 800 authentic and 921 spliced images. 

• CASIA v2.0: Features 12,614 images, consisting of 7,491 authentic and 5,123 spliced 

images, with image formats including JPG, TIF, and BMP, and dimensions ranging from 

240×160240 \times 160240×160 to 900×600900 \times 600900×600. 

Table 1: characteristics of both datasets 

Figure provides examples from the CASIA v1.0 dataset, with the first row displaying 

original images and the second row showing their corresponding forged versions. 

Example Images from CASIA v1.0 Dataset 

B. Evaluation Metrics 

Several standard evaluation metrics were used to assess the algorithm's performance, 

including accuracy, recall, precision, and F-measure. 
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Accuracy 

Accuracy is the percentage of correctly classified images and is calculated using the 

following formula [13, 14]: 

1. Accuracy=TP+TNTP+TN+FP+FN×100\text {Accuracy} = \ frac {\text {TP}+\text 

{TN}} {\text {TP} + \text {TN} + \text {FP} + \text {FN}} \times 100 

Where: 

1. TP (True Positive): Number of spliced images correctly identified as tampered. 

2. TN (True Negative): Number of authentic images correctly identified as original. 

3. FP (False Positive): Number of authentic images incorrectly classified as 

tampered. 

4. FN (False Negative): Number of spliced images incorrectly classified as original. 

Recall 

Recall, also referred to as True Positive Rate (TPR), is the proportion of correctly 

identified spliced images among all actual spliced images. It is computed as: 
2. Recall=TPTP+FN×100\text {Recall} = \frac {\text {TP}} {\text {TP} + \text {FN}} 

\Times 100 Recall=TP+FNTP×100 

The remaining metrics, such as precision and F-measure, can be discussed in the 

subsequent sections to provide a comprehensive evaluation of the proposed algorithm. 

Precision 

Precision, also known as the Positive Predictive Value, measures the proportion of 

correctly identified spliced images among all predicted spliced images. It is computed as 

follows [15]: 

Precision=TPTP+FP×100\text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} \times 

100 Precision=TP+FPTP× 100 

Figure 5 illustrates the accuracy comparison between the proposed algorithm and other 

existing methods. The proposed algorithm outperforms others, achieving an impressive 

accuracy of 94.55% on the CASIA v1.0 dataset. 

4. F-Measure 

The F-Measure is the harmonic mean of precision and recall, providing a balanced evaluation 

metric that accounts for both false positives and false negatives. It is calculated as [14, 15]: 

F-Measure=2×Recall×PrecisionRecall+Precision\text{F-Measure}=2\times frac{\text{Recall} 

\times \text{Precision}}{\text{Recall} + \text{Precision}} F-

Measure=2×Recall+PrecisionRecall×Precision 

V. Comparison with Other Passive Algorithms 

This section compares the performance of the proposed algorithm with several recent 

methods, including: 

• DWT + LBP [8] 

• Markov Features + QDCT 

• Deep Learning-Based Algorithm 

• Grey Level Run Length Matrix (GLRLM) 

• Markov Features 

All experiments were conducted using the same datasets, CASIA v1.0 and CASIA v2.0, to 

ensure consistency. The comparison considered not only accuracy but also the dimensionality 

of the features extracted. 

The results demonstrate that the proposed algorithm provides superior detection performance 

while maintaining an efficient feature dimensionality, making it a robust solution for image 

splicing detection. 

Table 2. Comparison of Proposed Algorithm's Results on CASIA v1.0 
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The graph in Figure 5 compares the accuracy of the proposed algorithm with existing methods 

on the CASIA v1.0 dataset. The results indicate that the proposed algorithm surpasses all 

other methods in terms of accuracy, achieving a notable 94.55%, highlighting its 
effectiveness and robustness in detecting spliced images. 

 

 
results for image splicing forgery detection algorithms on the CASIA v1.0 and CASIA 

v2.0 datasets. To summarize: 

• CASIA v1.0 Results: The proposed algorithm shows better performance than the one from 

due to fewer hidden layers. It also outperforms the LBP-based method from [15], which is 

sensitive to noise and has issues with structural patterns. 

• CASIA v2.0 Results: The proposed algorithm achieves an accuracy of 94.55%, with 

precision at 95.14% and recall at 98.99%. This demonstrates its strong performance in 

comparison to other methods. 

Table 3. Comparison of Proposed Algorithm and Other Methods on CASIA v2.0 

Methods Accuracy Precision Recall 

DWT+LBP 94.09% N/A 91.87% 

Markov features + QDCT 92.38% N/A N/A 

Deep Learning 87% 80.65% N/A 

GLRLM Texture features 87.6% N/A N/A 

Markov feature 93% N/A 92.5% 

Proposed Algorithm 96.36% 97.14% 99.03% 

Fig. Accuracy Comparison of Proposed Algorithm with Existing Methods on CASIA v2.0 

Table 4. Comparisons of Feature Vector Size 

Methods Feature Vector 

Size 

Accuracy 

Ce Li et al (2015) 1,452 92.67 % 

Sahar et al. (2013) 1,920 94.19% 

Matthias et al. (2010) 2,744 91.15% 

Xudong et al. (2015) 14,240 93.36% 

Proposed Algorithm 1,024 96.36% 

he algorithm's performance was further evaluated by testing its behavior in relation to the size 
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of the feature vector. This experiment provides valuable insights into the trade-off between 

feature vector dimensionality and detection accuracy, as well as the computational efficiency 

of the algorithm. Table 4 illustrate the comparative results of the proposed algorithm 

alongside its counterparts. As seen in Table 4, the proposed algorithm utilizes a feature vector 

of size 1,024, which is the smallest compared to the other four detection algorithms. The key 

advantage of a smaller feature vector lies in the reduced computational cost, as fewer features 

translate to less memory usage and faster processing times. Additionally, this reduction in 

dimensionality can help prevent overfitting, ensuring that the model generalizes better on 

unseen data [16]. 

For example, while other algorithms may employ feature vectors of larger sizes, often over 

1,500 or even 2,000, this can lead to unnecessary complexity without a significant increase in 

detection performance. On the contrary, the smaller feature size used in the proposed 

algorithm maintains high accuracy while keeping the model simpler and more efficient. This 

becomes particularly important when dealing with large-scale datasets or when implementing 
the algorithm in resource-constrained environments, where time and memory efficiency are 

crucial. The comparative results shown in Fig. further emphasize the benefits of the proposed 

algorithm's reduced feature vector size. While some competing methods may achieve 

slightly better 

performance in terms of accuracy, the trade-off is evident in their larger feature vectors, 

leading to increased computational demands. In contrast, the proposed algorithm strikes a 

balance between accuracy and efficiency, making it a practical choice for real-world 

applications in image splicing forgery detection. 

 
Using DCT Instead of HWT 

While previous experiments compared the performance of the proposed algorithm with other 

existing algorithms, additional analysis was conducted to evaluate the impact of using 

Discrete Cosine Transform (DCT) instead of Haar Wavelet Transform (HWT) in the feature 

extraction process. To further refine the feature set, Principal Component Analysis (PCA) was 

applied after DCT [16, 17]. 

Table 5 presents the performance metrics—accuracy, True Positive Rate (TPR), and 

precision—of both the HWT-based and DCT-based algorithms. The results highlight that the 

HWT-based algorithm outperforms the DCT-based algorithm in detection accuracy. 

Specifically: 

• For CASIA v1.0, the HWT-based algorithm achieves an accuracy of 94.55%, whereas the 

DCT-based algorithm delivers slightly lower accuracy. 

• For CASIA v2.0, the HWT-based algorithm demonstrates even better performance with an 

accuracy of 96.36% and the highest precision among the tested methods. 

The superior performance of the HWT-based algorithm can be attributed to its ability to 

effectively capture both spatial and frequency domain information, ensuring robust feature 

representation. In contrast, the DCT-based algorithm falls short because it primarily focuses 

on frequency domain features and neglects the correlation between pixels within blocks and 

between neighboring blocks. This limitation hampers its ability to detect fine-grained 

splicing artifacts, especially in regions with subtle texture variations. These findings underline 

the importance of selecting appropriate feature extraction techniques in forgery detection 
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systems. While DCT has its advantages in certain applications, HWT proves to be more 

suitable for image splicing forgery detection tasks, particularly on datasets like CASIA v1.0 

and CASIA v2.0 [16, 17, 18] 

Table 5. Comparison of Accuracy, Recall, and Precision: HWT-based vs. DCT-based 

Algorithm 

Datasets CASIA v1.0 CASIA v2.0 

Proposed Algorithms CNN + HWT CNN + DCT CNN + HWT CNN + DCT 

Accuracy 94.55% 90.9% 96.36% 93.64% 

Recall 95.14% 93.2% 97.14% 95.19% 

Precision 98.99% 96.96% 99.03% 98% 

F-Measure 97.03% 95.04% 98.08% 96.57% 

VI. Conclusion 

Image splicing is a common technique employed for image forgery, where a forger copies and 

pastes parts of one image into another to create a tampered image. This paper presents a 

robust algorithm for detecting image-splicing forgery by leveraging a deep learning-based 

approach integrated with Haar Wavelet Transform (HWT). The algorithm employs 

Convolutional Neural Networks (CNN) to automatically extract features from color images, 

and HWT is applied to enhance the feature representation. The final feature set is used by a 

Support Vector Machine (SVM) for classification. Comprehensive experiments were 

conducted to evaluate the performance of the proposed algorithm on two standard tampered 

image datasets: CASIA v1.0 and CASIA v2.0. The results demonstrate that the proposed 

algorithm outperforms recent methods in terms of accuracy, precision, and True Positive Rate 

(TPR). Notably, the proposed method achieves a high detection accuracy of 94.55% and 

96.36% on CASIA v1.0 and CASIA v2.0, respectively.To further analyze the robustness of 

the proposed algorithm, additional experiments were conducted by replacing HWT with 

Discrete Cosine Transform (DCT) followed by Principal Component Analysis (PCA). While 

the DCT-based approach achieved reasonable performance, t he  HWT-based algorithm 

d emo n st ra t ed  supe r io r  a c cu racy  an d  p rec i s ion , highlighting its effectiveness in 

capturing both spatial and frequency domain features. Moreover, the algorithm benefits from 

a low-dimensional feature vector, making it computationally efficient and suitable for real-

world applications. 

Future work should focus on extending the proposed approach to not only detect forgery but 

also localize the regions of tampering in spliced images. This enhancement would provide 

valuable insights into the nature and extent of forgeries, further advancing the 

capabilities of image-splicing detection systems. 
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