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Abstract 
Image forgery detection plays a critical role in maintaining the authenticity and integrity of 

digital content. Traditional forgery detection algorithms often face limitations in terms of 

time efficiency and detection accuracy. Emerging methods leveraging deep neural networks 

have shown promise in addressing these challenges. In this study, we propose a hybrid 

approach combining deep learning (DL) and machine learning (ML) techniques for passive 

image forgery detection. The DL component classifies images into forged and non-

forged categories, while the ML-based color illumination model effectively localizes the 

forged regions. This hybrid methodology enhances both detection accuracy and 

interpretability. The performance of the proposed approach is rigorously evaluated against 

widely-used public datasets, including CASIA1.0, CASIA2.0, BSDS300, DVMM, and the 

CMFD image manipulation dataset. Our results demonstrate superior accuracy, achieving 

99% on CASIA1.0, 98% on CASIA2.0, 98% on BSDS300, 97% on DVMM, and 99% on 

the CMFD dataset. Additionally, the computational efficiency of the approach outperforms 

traditional methods, making it suitable for real-time and large-scale applications. This 

hybrid framework is designed to address various forms of image manipulations, including 

splicing, copy-move forgeries, and region duplication, thereby providing a robust solution 

for digital forensic investigations. Future work will explore integrating advanced 

preprocessing techniques and leveraging multimodal datasets to further enhance robustness 

and applicability. 
Keywords: Passive Image Forgery Detection, Hybrid Approach, Deep Learning (DL), Machine 

Learning (ML), Digital Forensics, Color Illumination, Image Manipulation, Forgery Localization, 

CASIA Dataset, Computational Efficiency. 

1. Introduction 

In today’s digital era, the rise of social media has fostered a culture of sharing personal 

images online, enhancing connectedness and communication. However, this 

widespread availability of images has led to an increased risk of photo manipulation and 

forgery. This has highlighted the importance of image forensics, a field focused on 

verifying the authenticity of digital images. Photographs play a crucial role in various fields, 

such as journalism, legal cases, and investigations, serving as evidence to determine truth 

and originality. Courts of law, for instance, require certification of the authenticity of photos 

used as evidence. However, the advent of software tools has made image manipulation, such 

as retouching, copy-move, and splicing, an easy and accessible task. This has necessitated 

advanced methods to detect forged images, ensuring the reliability of digital media in critical 

applications. Traditional methods for image forgery detection, including block-based 

techniques and key-point analysis, are computationally intensive and time-consuming. To 
address these limitations, machine learning (ML) has emerged as a promising solution due 

to its automation capabilities and reduced human interaction. However, traditional ML-

based algorithms for forensics often involved sophisticated and resource-intensive training 

processes. 

This study leverages a hybrid approach combining deep learning (DL) and machine 

learning (ML) to overcome these challenges, ensuring accurate and efficient detection of 

forgeries in large datasets. The primary objectives are: 

1. To design a deep neural network (DCN) using supervised learning. 

2. To classify and identify forgeries in large datasets, such as splicing forgeries (SF) and 

copy-move forgery (CMF). 

3. To implement an ML-based approach for forgery localization using color 

illumination analysis. 

2. ML Technique 

Machine learning identifies objects by extracting features and utilizing them for 
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classification. Depending on the availability of labeled data, ML can be categorized as 

supervised learning (with labeled data) or unsupervised learning (without labeled data). 

In this approach: 

1. Features are extracted from labeled datasets during the training phase. 

2. The extracted features are fed into learning algorithms to train the model. 

3. During the testing phase, the model compares features from test images against 

learned features to predict output (e.g., forged or original). 

Supervised learning uses labeled datasets where classifiers like Support Vector Machines 

(SVMs) and Linear Component Analysis (LCA) learn to distinguish between forged and 

original images. The ML workflow involves inputting training images, extracting features, 

and applying them to machine learning algorithms. During testing, similar operations are 

conducted, and the model predicts the output based on the trained classifier . 

3. Deep Learning (DL) Technique 

Deep learning builds on traditional ML by automating feature extraction using deep neural 

networks. A Deep Convolutional Neural Network (DCNN) processes raw pixel values 

directly through layers of convolution, normalization, and pooling. 

• The first DCNN layer processes pixel values, normalizing the input image by 

subtracting the mean pixel value. 

• Convolutional layers apply filters to extract meaningful features from small patches of 

the image. 

• As more layers are added, the network becomes a Deep Neural Network (DNN) 

capable of learning complex patterns (Fig. 2). 

The hybrid approach combines DCNN for classification and ML-based color illumination 

analysis for localization, ensuring robust performance in forgery detection. 

Objectives of the Study 

1. To design a DCNN for classifying forged and non-forged images from large datasets. 

2. To implement an ML-based color illumination approach to detect forgery 

localization. 

3. To evaluate the hybrid DL-ML model using supervised learning on various 

benchmark datasets. 

4. Literature Survey 

The literature on image forgery detection highlights various techniques employing machine 

learning (ML) and deep learning (DL) methods to improve accuracy and efficiency in 

identifying manipulated images. 

Bunk et al. proposed two forgery detection techniques. The first utilized resampling features 

and deep neural networks (DNNs) for detecting tampered regions, coupled with random 

walker segmentation for forgery localization. The second approach employed long short-

term memory (LSTM) networks for classification using these features. 

Tarman introduced the M-SIFT method, an improved scale-invariant feature transform 

technique, for detecting copy-move forgery (CMF) in mirror-rotated images, achieving 98% 

localization accuracy but with significant computational time. Fengli and Qinghua used 

neural networks and Fourier transforms to detect forgery attacks in power frequency grids, 

analyzing irregular patterns in area control error (ACE) time series. 

Thirunavukkarasu and Kumar implemented a passive CMF detection technique using fast 

retina keypoint descriptor (FREAK) features extracted across Harris corners, which were 

then mapped using the K-means algorithm. 

Cheng and Meng focused on optical remote sensing images, applying a convolutional 

network to classify objects like sea, ground, and ships by learning edge features, which were 

refined using edge-aware regularization for improved shape formation. 

Nithiya and Veluchamy proposed adaptive over-segmentation to detect forgeries, reducing 

computational complexity by creating non-overlapping image blocks. Zhao et al. highlighted 

the limitations of traditional methods in handling complex images and proposed an 

object-based DL method to detect pixel-level forgeries using high-resolution images with 

minimal human involvement. 
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Girshick et al. introduced region-based CNNs for object detection, improving mean average 

precision through supervised pre-training and high-capacity convolutional networks. Zhan et 

al. proposed a superpixel-based method for detecting changes in high-resolution images, 

utilizing DNNs to identify semantic differences between altered and unaltered pixels. 

5. Proposed Algorithm 

In this paper, a hybrid approach for detecting copy-move forgery (CMF) and splicing 

forgery is proposed using a machine learning (ML)-based color illumination method 

integrated with deep convolutional neural networks (DCNNs). The detection pipeline 

involves training the DCNN on a massive, supervised dataset comprising labeled images. 

Algorithm Workflow: 

Training the DCNN: 

1. The DCNN model is trained with a labeled dataset containing forged and non-forged 

images. 

2. Training parameters, such as the number of mesh layers, filters, filter sizes, momentum, 

initial learning rate, learning rate schedule, L2 regularization, maximum epochs, and 

mini-batch size, are defined. 

3. After initialization, the network undergoes supervised training and validation with a 

minimal batch size. 

Color Illumination Method: 

1. This ML-based method is applied to public datasets to identify passive forgeries. 

2. The process involves two key steps: 

a. Classification: Images are categorized using a Support Vector Machine (SVM) 

classifier. 

b. Detection: Doctored regions are localized. 

Performance Metrics: 

1. Precision (P), Recall (R), and F1 score are computed to evaluate the algorithm's 

effectiveness. 

Incorporating Transfer Learning: 

1. A pre-trained DCNN model is fine-tuned for multiple datasets using transfer learning. 

2. The datasets are split into 80% for training and 20% for testing. 

Datasets and Model Training: 

• The DCNN, referred to as XONet, is trained on datasets including CASIA v1.0, CASIA 

v2.0, DVMM, and BSDS300. 

• CASIA v1.0 emphasizes splicing forgery and contains 800 real shading images and 921 

spliced images in JPEG format, each with dimensions of 384 × 256 pixels. Images are 

categorized based on scenes or objects, such as animals, characters, textures, and plants. 

Advantages of the Proposed Approach: 

• Deep Learning Integration: DCNN leverages in-depth learning to automatically 

extract features and classify forgeries. 

• Color Illumination Technique: Enhances forgery localization by identifying 

discrepancies in lighting. 

• Transfer Learning: Boosts model performance by utilizing knowledge from pre-

trained networks like ImageNet. 

The proposed method demonstrates significant improvements in CMF and splicing detection 

through robust training and validation. 

Dataset and Convolutional Neural Network (CNN) Training 

Dataset Description: 

The dataset utilized for CMF detection contains 48 high-resolution, uncompressed 

PNG images. The average image size is 1500 × 1500 pixels, categorized into classes such as 

living, nature, human-made, and blended. Various attacks, including scaling, rotation, JPEG 

compression, and downsampling, are applied to these images, resulting in a total of 1826 

CMF images. 

Deep Neural Networks (DNN): 

The DNN, an advanced version of ML, automatically extracts features and learns relevant 
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information at progressively deeper layers of the network. Using DL methods, forgery 

detection is performed with minimal computational complexity, even for massive datasets 

available on the Internet. 

Training Challenges: 

Training a DCNN involves large datasets with millions of images to achieve sufficient 

depth. This requires significant computational resources, including high-end GPUs, to 

prevent issues like overfitting and convergence delays. Training from scratch often demands 

heavy computation and large memory resources, making it a time-intensive task. 

Network Architecture and Layers: 

To simplify the training process, some researchers adopt a structured network with specific 

layers: 

• Input Layer: Defines the input image size. For example, a 116 × 116 × 3 image 

(height, width, and depth). 

• Convolutional Layers: 

o The first convolutional layer uses 32 high-pass filters (5 × 5 filter size), generating 

32 feature maps. 

o Weights are initialized with 94 weight matrices for these filters. 

o The second classification layer employs 16 filters. 

• ReLU Layers: Four ReLU activation layers follow to introduce non-linearity. 

• Max-Pooling Layers: Three max-pooling layers reduce the spatial dimensions and 

computation load. 

• Fully Connected Layers: Two fully connected layers aggregate learned features. 

• Softmax Layer: Outputs the final classification probabilities. 

Convolution Operation: 

The CNN comprises an input layer, multiple hidden layers, and an output layer. 

• For grayscale images with one channel, the depth is one; for color images, the depth is 

three, representing three color channels. 

• A color image (size M×NM \times NM×N) with three channels forms a 3D matrix of size 

3×M×N3 \times M \times N3×M×N. The kernel (filter) applied should match the input's 

depth. 

• Convolution of a color image with a kernel (3×w×h3 \times w \times h3×w×h) produces a 

single output channel. 

Convolution Formula: 

• Output size: 2×(M−w+1)×(N−h+1)2 \times (M - w + 1) \times (N - h + 

1)2×(M−w+1)×(N−h+1), where: 

o 222: Represents the number of output channels. 

o M,NM, NM,N: Image width and height. 

w,hw, hw,h: Kernel dimensions.Modified Content 

6. Padding 

Padding ensures that the dimensions of the image matrix remain consistent during the 

convolution operation. Zero-padding is used to maintain the size of the matrix. For example, 

consider a convolution between a 7×77 \times 77×7 image matrix and a 3×33 \times 33×3 

kernel. Zero-padding is applied to facilitate the operation, as illustrated in Fig. 7. 

Rectified Linear Unit (ReLU) Transfer Function 

The ReLU activation function converts positive values to 1 and negative values to 0. Its 

derivative is zero for negative values and unity for positive ones. Initially, a dataset with 

properly labeled images is prepared. Recalling an image corresponds to recalling a matrix of 

pixel values ranging from 0 to 255. In supervised learning, input data is mapped to output 

labels. 

The convolution operation between the input image and kernel extracts features, which are 

passed to subsequent layers. This operation generates a large matrix, which can be 

computationally intensive to process. Pooling is employed to reduce the matrix size, 

decreasing the model's computational complexity. Next, probabilities are calculated based 

on the high numeric values in the matrix to determine the likelihood of specific image 
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elements. The softmax function assigns probabilities to the outcomes. 

7. Image Forgery Classification 

Image forgery classification, including copy-move and splicing forgery (SF), is performed 

using DCNN. The model classifies images as "forged" or "not forged." The classification 

results are validated on test sets, with performance measured by correctly classified images, 

as illustrated in Fig. 3. 

Simple Linear Iterative Clustering (SLICO) 

• Input: Adaptive over-segmented image 

• Output: SLICO image 

Steps: 

1. Select the maximum color distance. 

2. Assign the maximum color distance to clusters. 

3. Compute centroids and store them as seed values. 

4. Perform color conversion, identify seeds, and compute superpixels. 

5. Ensure connectivity, assign output labels, and allocate labels/seeds. 

Scale-Invariant Feature Transform (SIFT) 

• Input: SLICO image 

• Output: SIFT image 

Steps: 

1. Load a grayscale image III. 

2. Create 4×K4 \times K4×K matrices to store SIFT frames per column. 

3. Generate differences of Gaussian scale spaces. 

4. Clear image boundaries and remove intersecting descriptors. 

5. Set a threshold above 0 or 0.01 to filter weak features. 

6. Set an edge threshold above 0; ignore features exceeding this value. 

Block Feature Matching 

• Input: SIFT image 

• Output: Block feature matching 

Steps: 

1. Match patches and set a threshold distance between detected SIFT pixels at 0.15. 

2. Create two patches AAA and BBB, identifying key points x,yx, yx,y for each. 

3. Calculate key point thresholds to confirm valid matches. 

4. Perform color growth operations based on threshold values for red, green, and blue. 

5. Apply morphological operations to identify forgery regions accurately. 

8. Performance Calculation 

Performance accuracy is evaluated at two stages: 

Image Forgery Classification Stage: After training with CMF and splicing datasets, the 

DCNN achieves: 

1. CASIA v1.0 v a l i d a t i o n  a c c u r a c y :  

0.98070.98070.9807, t e s t 0.98780.98780.9878 

accura

cy: 

2. CASIA v 2 . 0  v a l i d a t i o n  a c c u r a c y :  

0.97670.97670.9767, t e s t 0.98050.98050.9805 

accura

cy: 

Image Forgery Localization Stage: For the CoMoFoD 

dataset, the achieves: 

algorit

hm 

1. Precision: 97% 

2. Recall: 100% 

3. F1 Score: 99% 

9. Proposed Algorithm Results 

Multiple experiments are conducted on various datasets using a GPU-enabled machine with 

the following specifications: Intel i7 processor and Z170X chipset. 

This enhanced approach ensures optimal classification and localization accuracy while 

leveraging advanced DL techniques and computational resources. 
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Table 1: DCNN Training on CASIA v1.0 Using Transfer Learning 

 loss accuracy, % s  

1 0.6931 50.00 2.27 1 

50 0.4314 85.00 291.18 550 

100 0.1377 100.00 582.36 1100 

150 0.1184 100.00 878.15 1650 

200 0.1166 100.00 1172.63 2200 

Table 2: DCNN Training on CASIA v2.0 Using Transfer Learning 

 loss accuracy, % seconds  

1 0.6932 25.00 1.86 1 

50 0.1409 90.00 11,612.89 22,200 

100 0.0050 100.00 23,513.76 44,850 

150 0.0101 100.00 35,397.85 67,500 

200 0.0027 100.00 47,384.30 90,150 

The system uses a Gaming G1 motherboard with 32 GB DDR4 RAM, PCIe Gen 3 × 4 SLI 

slots (32 GB/s speed), and PCIe Gen 2 × 2 slots (10 GB/s speed). It also supports NVIDIA 

SLI configurations for four-way, three-way, and two-way setups, along with four NVIDIA 

GEFORCE GTX 1070 GPUs (8GB × 4 = 32 GB GPU RAM). The image 

forgery classification and localization using the proposed approach were carried out in 

MATLAB 18 software on various datasets. Dataset contains 48 plain CMF images with 

ground truth images. These images are evaluated and compared with existing methods [30–

32]. Dataset [4] includes spliced images, while the CASIA v1.0 and v2.0 versions 

contain folders for authentic and forged images. CASIA v1.0 has 800 authentic and 

800 spliced images, and CASIA v2.0 has 7491 authentic and 7491 spliced images. The 

BSDS dataset includes CMF and splicing forgeries, with 100 test images and 200 training 

images. Results for the CASIA v1.0 dataset are shown in Fig., row 1. The authentic 

folder contains 800 images, and the spliced folder has 921 images. These images are 

divided into training (80%) and testing (20%) sets. All spliced images are shown in the 

first row (top), with the detected forgery output displayed in the first row (bottom). The 

algorithm's performance accuracy for the CASIA v1.0 validation and test sets is 98% and 

99%, respectively. 

Results for the CASIA v2.0 dataset are shown in Fig., row 2. The authentic folder contains 

7491 images, and the spliced folder has 5123 images. All spliced images are shown in the 

second row (top), with the detected forgery output shown in the second row (bottom). The 

algorithm's performance accuracy for the CASIA v2.0 validation and test sets is 97% and 

98%, respectively.The dataset contains 100 images for testing and 200 images for training 

the network. In the third row (top), all spliced images are shown. In the third row (bottom), 

the image region analyser application generates forgery detection output. The DVMM 

dataset has a forgery detection accuracy of 97%. 

The results for the BSDS300 database are shown in Fig. 11, row 4. This dataset consists of 

200 images for training and 100 images for testing. In the first row, all spliced images are 

displayed. In the fourth row (top), machine learning-based colour illumination forgery 

detected regions are shown. In the fourth row (bottom), the image region analyser 

application generates forgery detection output. The BSDS300 dataset has a forgery detection 

accuracy of 98%.The results for the CoMFD dataset are shown in Fig., row 5. This dataset 

contains 48 images of plain copy-move forged images, including natural, architectural, 

animal, art, plant, and text images. In the fifth row (top), all copy-move forged images are 

shown. In the fifth row (bottom), a morphological operation shows the forgery detection 

output. The proposed algorithm is tested on an image-level and achieved performance 

accuracy: precision (P) = 98%, recall (R) = 100%, and F1 = 99%. 
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Fig.1 Bar graph compares accuracy for CMF and SF detection. 

Table 3 presents the accuracy result comparison across the CASIA 1.0, CASIA 2.0, DVMM, 

BSDS300, and CMFD datasets. The comparison shows that our proposed method 

outperforms others across all datasets. Fig. 12 illustrates a bar graph comparing the proposed 

method with other methods. In Fig. 12, blue represents the proposed method, orange 

represents Yuan Rao, yellow represents Muhammad, violet represents He, and green 

represents the comparison. 

Conclusion 

A hybrid deep learning (DL) and machine learning (ML) approach for passive image 

forensics is proposed in this paper. The DCNN classifies images as forged or not forged, 

while a pre-trained DCNN model, using a transfer learning approach, learns additional 

image patterns. Through DCNN, we extract features from test images and classify image 

categories. Machine learning with a colour illumination algorithm localizes CMF and 

splicing forgeries. The experimental results, shown in Fig. 11, demonstrate that the forged 

areas are detected accurately.The performance accuracy on the CASIA v1.0 validation set 

and test set is 98% and 99%, respectively. For CASIA v2.0, the validation and test set 

accuracy is 98% and 98%, respectively. The DVMM dataset has a forgery detection 

accuracy of 97%, while the BSDS300 dataset achieves 98%. The proposed algorithm, tested 

on an image level using the CMFD dataset, provides performance accuracy: precision (P) = 

98%, recall (R) = 100%, and F1 = 99%. 

In future work, the following areas will be explored to enhance the proposed image forgery 

detection and localization system: 

Deep Learning Architectures: Investigating the use of more advanced deep learning 

architectures, such as Generative Adversarial Networks (GANs) or Transformer-based 

models, to improve accuracy and generalization across diverse datasets. 

Dataset Expansion: Utilizing a more extensive variety of datasets, including datasets 

containing forged images from different manipulation techniques, such as image tampering, 

video forensics, and deepfake detection, to improve model robustness. 
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