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Abstract 
With the exponential growth of connected devices and sophisticated cyber threats, traditional 

rule-based firewalls are becoming increasingly inadequate in providing real-time and adaptive 

security. This paper explores the design, implementation, and performance of AI-powered 

smart firewalls, which utilize machine learning (ML), deep learning (DL), and anomaly 

detection techniques to protect endpoints and networks. Smart firewalls can dynamically learn 

threat patterns, adapt policies in real-time, and detect zero-day attacks with minimal human 

intervention. This research proposes a hybrid firewall model incorporating both supervised and 

unsupervised learning to create an intelligent threat prevention system. Experimental results 

demonstrate high detection accuracy, low false positive rates, and real-time performance 

efficiency. 
Keywords: Smart Firewall, Artificial Intelligence, Network Security, Intrusion Detection, 

Machine Learning 

1. Introduction 

The exponential growth of networked devices and the emergence of complex, evasive cyber-

attacks have greatly increased the complexity of the threat landscape in computer systems since 

the seminal study by Katiyar and colleagues in 2024. Static rule-based firewalls and other 

outdated security measures are becoming more and more useless in the face of these 

contemporary dangers. Polymorphic malware, zero-day vulnerabilities, and Advanced 

Persistent Threat (APT) tools are continually evolving to elude detection, and firewalls that 

depend primarily on pre-defined rules and signature-based detection are susceptible to these 

threats [1]. In addition to not being able to evaluate contextual behavioural data or monitor 

traffic in real-time, these antiquated technologies let attackers sneak into networks unnoticed 

by using small anomalies or new attack patterns [2-4]. In light of these difficulties, AI has 

emerged as a game-changing factor in cyber security, especially when it comes to improving 

firewall capabilities. Artificial intelligence (AI) firewalls, in contrast to conventional systems, 

dynamically detect threats, learn from fresh data, and adapt to new attack plans automatically, 

without the need for human updates. Through an adaptive learning process, firewalls are able 

to detect both known and unknown threats, creating a security system that adapts to new threats 

as they emerge [5]. With the use of AI, security systems can make a fundamental change from 

using reactive tactics to using proactive and predictive ways for threat identification. In the 

realm of cyber-security, specifically in the areas of threat assessment, detection, prevention, 

and mitigation, there needs to be a significant separation between the nature of AI and its 

benefits. Cyber protection measures are made more accurate, faster, and more scalable with the 

help of AI-based solutions. Artificial Neural Networks (ANNs) are crucial technologies that 

are used for a variety of activities, including anomaly detection, malware classification, and 

intrusion detection systems (IDS) [6-8]. Artificial neural networks (ANNs) are great at seeing 

complicated connections and patterns in big, noisy datasets, which helps computers distinguish 

between safe and harmful actions with more and more precision. In order to detect hidden 

suspicious behaviors like data exfiltration attempts, lateral intrusions, and anomalous traffic 

bursts, AI-driven firewalls that are equipped with ANNs and other ML algorithms can process 

massive amounts of data. Not only are these models taught to spot obvious signs of malicious 

activity, but they may also learn to spot unusual patterns and compare them to learnt standards 

of typical network activity. In comparison to signature-based firewalls, AI firewalls can detect 

and prevent harmful malicious activity before it happens [9]. Furthermore, AI improves cyber 

defense as a whole by automating decision-making, threat prioritization, and incident response 
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in real-time. Methods like supervised learning aid in the detection of labelled dangers, while 

unsupervised learning finds out-of-the-ordinary occurrences. Firewalls can improve their 

detection policies using reinforcement learning's feedback loops, and distributed devices can 
learn together with federated learning's help without sacrificing data privacy [10,11,12]. In 

enterprise and IoT settings, these capabilities take on added significance due to the high data 

volumes, numerous attack vectors, and vital response time. Artificial intelligence (AI) 

integration into firewalls has several uses beyond detection alone. Firewalls that are smart may 

learn how attacks work, observe user actions, predict potential attacks, and adjust their own 

defenses on the fly. This results in a security system that is smart, flexible, and aware of its 

surroundings, allowing it to thwart cybercriminals in real time. Systems powered by artificial 

intelligence not only aid in the detection and prevention of assaults, but also in the formation 

of a strong and extensible cyber security infrastructure that can adequately react to future 

threats, which are only going to get more sophisticated and frequent [13]. 

Therefore, AI integration into contemporary cyber security is a game-changer, not only an 

improvement. Organizations and individuals may now redefine digital asset protection with 

AI-driven smart firewalls, which enable the transition from reactive security to proactive 

defense. They represent a paradigm shift in security that is more nimble, smart, and adaptable 

to new threats as they emerge [14]. 

2. Related Work 

Sharma and Bhardwaj (2017) [15] compared standard supervised learning models (DT, RF, 

and NB) for detecting computer network intrusions. They used the KDD'99 dataset, a popular 

intrusion detection corpus but criticized for its redundancy and uneven class distribution. Each 

algorithm was carefully assessed for precision, recall, F1-score, and false positive rate. Random 

Forest had the highest accuracy (93%) and lowest FPR of the models examined. The authors 

admitted that the dataset's class imbalance impacted Naïve Bayes and Decision Tree models' 

learning capacities. They used Pattern Recognition Theory to emphasize statistical regularities 

and dependencies in high-dimensional feature fields. They claimed that current intrusion 

detection requires robust and interpretable classifiers for huge and non-linear data streams. 

They strongly recommended integrating hybrid feature selection methods like Information 

Gain with Recursive Feature Elimination (RFE) to improve detection system generalizability 

and computational efficiency. Their investigation found that Random Forests work, but real-

time deployments require strategies to reduce overfitting and redundancy. In a simulated 

Internet of Things (IoT) environment, Gupta et al. (2018) [16] tested Support Vector Machines 

(SVM) to detect DoS threats. Due to IoT devices' limited processing and memory resources, 

the authors chose SVM for its mathematical rigor in high-dimensional spaces and ability to 

build optimal separation hyperplanes. The study used synthetic traffic data from TCP SYN 

floods and ICMP echo storms, common DoS attack patterns. The SVM model had 94.2% 

detection accuracy and excellent specificity. Its performance decreased under huge traffic 

volumes, with real-time classification latency issues—a major shortcoming in IoT settings 

where detection speed is crucial. Margin Maximization Theory states that the best classification 

boundary maximizes the margin between classes in feature space, improving generalization. 

SVMs operate well in controlled contexts, but their lack of incremental learning and scalability 

limit their use in dynamic, data-heavy network ecosystems. They recommended hybrid SVM-

based systems with dimensionality reduction (e.g., PCA or t-SNE) and online learning 

extensions to adapt to real-time situations without compromising precision. Rani and Mishra 

(2019) [17] used CNNs to categorize and analyze packet flows in SDN systems to advance 

intrusion detection. Their study innovatively translated packet flow metadata into two-

dimensional grid-like input representations suited for CNN processing, recognizing that 

standard feature engineering in network traffic analysis is laborious and error-prone. They 

trained a multi-layer CNN architecture to extract shallow and deep spatial information across 
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packets using the NSL-KDD dataset, an improved version of KDD'99 to decrease redundancy. 

They found that their classifiers outperformed traditional ones with an accuracy of over 96% 

and better generalization to unknown attack types. Connectionism Theory supported the study's 
claim that artificial neural structures can emulate the brain's ability to discern patterns across 

complex and interdependent characteristics. This theoretical lens confirmed CNNs' ability to 

comprehend traffic as temporally and spatially connected information. The authors noted 

CNNs' black-box limitations in security, where interpretability and accountability are crucial. 

They recommended against overusing high-accuracy metrics without interpretability 

frameworks due to decision-making intransparency. They suggested using explainable AI 

methods like Layer-Wise Relevance Propagation (LRP) or SHAP values to decode CNN 

feature attributions. Joshi and Mehta (2020) [18] evaluated ensemble-based machine learning 

techniques for network intrusion detection using classifiers including Decision Trees (DT), 

Gradient Boosting Machines (GBM), and eXtreme Gradient Boosting. The authors used the 

CICIDS2017 dataset, a current and diverse dataset that includes real-world traffic patterns, 

including benign flows and cyber threats including DoS, PortScan, DDoS, and Web attacks. 

Their research focused on whether ensemble strategies—specifically those that integrate the 

predictive potential of numerous weak learners—could improve detection rates while 

remaining computationally feasible. The best model for accuracy (96.3%) and computational 

cost was XGBoost with feature bagging. Ensemble Learning Theory states that pooling many 

hypothesis spaces minimizes generalization error and improves robustness. Despite their 

predictive power, adversarial perturbations—subtle input changes that influence categorization 

boundaries—can affect such models, the authors noted. This issue necessitated adding 

adversarial training or model hardening to intrusion detection ensemble models. The study 

found that XGBoost is good for structured network data but needs robustification tactics like 

input regularization or certified defenses to perform in hostile contexts. Kulkarni et al. (2020) 

[19] suggested an LSTM-based deep neural network for temporal analysis of system and 

network logs to identify low-and-slow attacks, which have subtle, extended behavioral 

patterns. Traditional RNNs have vanishing gradient difficulties and short memory spans, 

therefore the authors used LSTM's gated design to retain long-term dependencies across time-

stamped traffic logs. The dataset contained system event log sequences and real-time traffic 

simulations. Their method greatly enhanced detection accuracy for complicated attack 

scenarios like data exfiltration, privilege escalation, and long-term insider threats. The study 

used Sequential Modeling Theory to underline the necessity of memory cells and input/output 

gates in LSTM networks to "remember" key patterns and discard unnecessary data. Resource 

intensity was a major downside despite strong detection performance (over 95%). The model 

was too resource-intensive for edge routers and IoT gateways due to GPU resources and long 

training cycles. To facilitate real-time production system applicability, they recommended 

model compression methods as knowledge distillation or quantization. Verma and Singh 

(2021)[20] developed a hybrid deep learning system that used CNNs and LSTM networks to 

detect network intrusions spatially and temporally. Researchers used the BoT-IoT dataset, 

which includes theft, DDoS, and reconnaissance assaults against IoT infrastructure. Their 

hybrid design uses CNN layers to extract spatial information from flow-based traffic 

representations and LSTM layers to process temporal traffic behavior sequence dependencies. 

According to Hybrid Deep Learning Theory, this multi-view learning paradigm allowed the 

system to merge localized feature extraction with time-series modeling, capturing complicated 

and layered attack vectors better than single-model techniques. Multi-step infiltration situations 

were detected with 98.7% accuracy by the model. However, the authors criticized deep hybrid 

networks' computational cost and training instability. Practical issues included over fitting 

hazards, convergence delays, and hyper parameter adjustment across model stages. Their study 

found that hybrid models had better detection granularity, but interpretability, training 

mailto:iajesm2014@gmail.com


International Advance Journal of Engineering, Science and Management (IAJESM) 
Multidisciplinary, Multilingual, Indexed, Double Blind, Open Access, Peer-Reviewed, Refereed-International Journal. 

SJIF Impact Factor =8.152, January-June 2025, Submitted in March 2025 
 

Volume-23, Issue-II            iajesm2014@gmail.com 151 

ISSN: 2393-8048 

overhead, and latency must be considered before implementation in time-sensitive or critical 

infrastructure contexts. Raj and Dutta (2021) [21] designed and optimized lightweight 

machine learning models for fog computing environments with restricted computational and 
storage resources. The UNSW-NB15 dataset, which covers contemporary attack categories 

including Fuzzers, Backdoors, and Shellcode, was used to assess three conventional ML 

models: Logistic Regression (LR), k-Nearest Neighbours (k-NN), and Random Forest (RF). 

They examined detection performance and resource efficiency trade-offs, focusing on pruning 

and quantization to compress models for edge-level fog nodes. In trials, a pruned and quantized 

Random Forest model achieved a good balance between detection accuracy (~91.4%) and low 

latency and memory usage. Resource-Constrained Learning Theory suggests adapting model 

designs and complexity to computing availability without compromising task-critical 

performance. Importantly, the authors showed that standard ML models, frequently rejected in 

favor of deep learning, can be optimized for decentralized, real-time fog infrastructure intrusion 

detection. Their static, compressed models were limited in flexibility and learning from 

dynamic input, therefore they suggested incremental learning strategies for future work. Nair 

and Kumar (2022) [22] studied Explainable Artificial Intelligence (XAI) in network intrusion 

detection to overcome the "black-box" nature of high-performing ensemble models. A Gradient 

Boosting Machine (GBM) trained on CICIDS2017 was fed SHAP values. They wanted to 

retain high detection performance and provide interpretability for security analysts and 

regulators in key infrastructure industries including banking, healthcare, and defense. They 

used Game Theory and the Shapley Value, which assigns a fair contribution to each feature in 

the final prediction, like a cooperative game. This study showed that SHAP-enabled GBM 

models could pinpoint important aspects for each detection event, such as odd packet lengths 

or port activity. Explainability is essential in high-stakes cyber security contexts, where 

transparent decision-making promotes audits, compliance, and trust. Critically, SHAP's 

computational expense is non-trivial, especially in real-time applications, and the authors 

suggested surrogate model training or feature grouping to reduce explanation production 

latency. 

Federated Learning (FL) was used to pioneer privacy-preserving intrusion detection in 

distributed IoT systems when data centralization is not possible due to privacy, bandwidth, or 

security constraints by Chatterjee and Sen (2023) [23]. Their design includes training CNN 

models on several IoT nodes separately and federated weight aggregation at a central server. 

The federated CNN outperformed a monolithic model trained on centralized data (accuracy 

~94%) on a modified BoT-IoT dataset across devices. Federated Learning Theory states that 

decentralized model training improves privacy and edge intelligence while raw data is local. 

Their major innovation was proving FL-based intrusion detection works without sacrificing 

performance. However, they critically discovered two main bottlenecks: (1) communication 

overhead due to frequent parameter exchange and (2) model synchronization issues, especially 

under client dropout or heterogeneous data distributions. To increase efficiency, the authors 

suggested studying adaptive federated averaging and sparsification of updates. They concluded 

that Federated Learning is a promising cyber security frontier, but scalable, real-world 

application requires robust system-level design and communication optimization. Rao and 

Patil (2024) [24] used Reinforcement Learning (RL) to construct a self-adaptive firewall 

system that updates security settings based on network traffic. They used a model-free RL 

method called Q-learning to evaluate state-action pairs and optimize packet blocking and 

permitting. Their experiment simulated a smart enterprise network with port scanning, DDoS, 

and insider anomalies. Trial and error was used to develop appropriate firewall rules, with 

reward feedback depending on threat minimization. Behaviorist Learning Theory, like behavior 

conditioning in human psychology, suggests that intelligent systems may be learned through 

environmental interaction and reward signals. Q-learning autonomously adjusted firewall rules 
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to fit changing traffic trends, improving adaptive security coverage over static rule sets. The 

authors noted that training in live networks is dangerous because the RL agent's early 

exploration may allow malicious packets or interrupt benign services. Safe deployment 
requires simulated settings, safe exploration methodologies, and constrained policy learning. 

Their study found that RL can design autonomous, self-healing firewalls, but production-grade 

implementations must ensure safety and convergence. Due to packet visibility issues, 

signature-based anomaly detection systems fail in encrypted network traffic, however Iyer and 

Srinivasan (2024) [25] created a deep auto encoder-based system. They used a deep auto 

encoder to compress packet features from CICIDS2018. The auto encoder was trained 

unsupervisedly to reconstruct typical network behavior, with substantial reconstruction 

mistakes indicating anomalies. Anomaly Detection Theory states that threats can be discovered 

as statistical outliers deviating from norms even without labels or attack signatures. The authors 

showed that their approach could detect Brute Force, Heartbleed, and Botnet activity even with 

encrypted payloads. They noticed that auto encoders are good for zero-day detection since they 

can learn latent structures unsupervised. However, their critical review showed that anomaly 

classification threshold selection was non-trivial and required domain-specific calibration to 

reduce false positives. The deep architecture's computing load hindered real-time deployment. 

It was hypothesized that adaptive thresholding, layer pruning, and model distillation may scale 

low-latency security applications.  

Banerjee and Jadhav (2023) [26] used unsupervised outlier detection models like OC-SVM 

and Isolation Forests in enterprise firewalls to detect zero-day attacks. Only benign traffic was 

used to train these models, which used distance and density to identify novel hazards. The 

researchers tested their methods using live traffic simulations, including synthetic zero-day 

exploits not detected during training. They use anomaly scoring to isolate unusual or aberrant 

data points (attacks) in sparse feature space based on Outlier Detection Theory. Their models 

detected 92.4% of zero-day attack variants, beating numerous supervised classifiers that 

struggled with generalization. However, the authors critically noted that noise and data quality 

greatly affect unsupervised model performance. In real-world settings with mislabeled or 

insufficient logs, these models may overfit to benign abnormalities or overlook minor threat 

signals. Data sanitization pipelines, dynamic model retraining, and ensemble anomaly scoring 

were suggested to address issue. They found that unsupervised intrusion detection can work, 

especially for new threat landscapes, but thorough pre-processing and continual validation are 

needed to ensure reliability. Khan and Deshmukh (2022) [27] examined how BiLSTM 

networks improve real-time intrusion detection system accuracy and contextual depth. The 

scientists created a traffic-aware deep learning framework to capture temporal correlations 

across both directions of data flow because modern network communication is bidirectional 

and inbound and outbound packets can carry threat signatures. Annotated traffic from a 

simulated business context with C2 callbacks, payload injections, and timed exploits was used 

to create the model. Temporal Sequence Learning Theory supported the idea that systems that 

can learn sequential dependencies in both forward and reverse time dimensions are needed to 

capture time-dependent traffic characteristics. The study showed that BiLSTM outperformed 

unidirectional LSTM by 3.5% in temporally obscured attack detection over several 

communication intervals. Without architectural optimization, BiLSTM models are 

computationally demanding and unsuitable for edge-based or low-latency contexts. Attention 

techniques, weight sharing, and model pruning were suggested to adapt BiLSTM networks to 

real-time systems without compromising responsiveness. The study found that BiLSTM can 

replace rule-based detection in dynamic networks but must be tailored for low-computational 

situations. 

Thomas and Ghosh (2024) [28] developed a multi-modal intrusion detection approach that 

included NLP for log analysis and CNNs for structured traffic categorization. The finding that 
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network intrusions leave trails across heterogeneous data sources, such as unstructured logs 

and structured packet information, can lead to incomplete threat detection when studied in 

isolation inspired their research. Their approach handled textual log files using word 
embeddings and sequence encoders (e.g., BERT and BiGRU) while CNN layers inferred spatial 

patterns from traffic data including flow time, byte counts, and protocol flags. The Multimodal 

Learning Theory-based model obtained over 95% classification accuracy on a composite 

dataset comprising simulated insider threats and real-world public datasets (BoT-IoT and CIC-

IDS2018). The system caught lateral movement, insider privilege abuse, and linked stealth 

attacks, which data streams normally miss. The authors critically emphasized that multi-modal 

models require high system resources and sophisticated synchronization pipelines for 

concurrent data intake and alignment. A major design problem was guaranteeing log entry-

traffic flow temporal consistency. The study found that integrated log and traffic monitoring 

improves threat visibility, but high-throughput networks require advanced data fusion 

methodologies, distributed processing, and streaming compatibility. 

3. Proposed Smart Firewall Architecture 

3.1 Architectural Diagram 

3.2 Components 

1. Packet Capture Module: Captures network traffic in real-time. 

2. Feature Extractor: Converts raw packets into structured features (e.g., IP, port, protocol, 

size). 

3. ML Classifier Module: Uses supervised learning (e.g., Random Forest, SVM) to classify 

traffic. 

4. Anomaly Detector: Unsupervised learning (e.g., Isolation Forest, Auto encoder) identifies 

deviations from normal behavior. 

5. Rule Engine: Dynamically updates firewall rules using model predictions. 

6. Decision Engine: Makes final allow/block decision. 

 
Figure 1: Architectural Diagram of Proposed Smart Firewall Architecture 

4. Mathematical Modeling 

4.1 Feature Vector Representation Let a network packet be represented by a feature vector: 

where each corresponds to a measurable attribute (e.g., protocol type, packet length). Let a 

network packet be represented by a feature vector x∈ Rn, where each component xi corresponds 

to a measurable attribute such as: 

• x1: Protocol type (e.g., TCP, UDP) 

• x2 : Source IP 

• x3 : Destination IP 

• x4 : Source port 

• x5 : Destination port 

• x6 : Packet size 

• ………. 

• xn : Other relevant features 

Thus, the feature vector is defined as: 

x = [x1,x2,x3,…,xn] 
T 
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These vectors form the input to both the supervised and unsupervised learning models in the 

firewall. 

4.2 Supervised Classification Using Support Vector Machines: where is the kernel function, 
are Lagrange multipliers, and are class labels. To classify network traffic as either benign or 

malicious, a supervised SVM model is employed. 

Given a labeled dataset {(xi,yi)}i=1 
m where xi∈ Rn  and yi∈{−1,+1} the SVM attempts to find 

the optimal hyper plane defined as: 

 
where: 

• αi are the Lagrange multipliers, 

• K(xi,x) is the kernel function (e.g., RBF kernel: K(xi,x)=exp(−γ∥xi−x∥2)), 

• b is the bias term, 

• yi  are the class labels. 

The classification decision is made as: 

y^ = sign(f(x)) 

4.3 Anomaly Detection using Auto encoder Given input, the auto encoder attempts to 

reconstruct it: Anomaly score: If, then is flagged as anomalous. To detect novel or zero-day 

attacks, an unsupervised auto encoder is trained on normal traffic patterns. 

Let x be an input feature vector. The auto encoder consists of: 

• Encoder function: h = fθ(x) 

• Decoder function: x^ = gϕ(h) 

Where fθ  and gϕ are neural networks with learnable parameters θ and ϕ respectively. The 

reconstruction error (or anomaly score) is calculated as: 

Anomaly Score = ∥x−x^∥2 

A threshold, ϵ is set, and if: 

∥x−x^∥2 > ϵ 

Then x is flagged as anomalous. 

5. Experimental Setup and Evaluation 

This section elaborates on the datasets used, evaluation metrics employed for performance 

assessment, and the empirical results demonstrating the effectiveness of the proposed smart 

firewall system. 

5.1 Dataset  

To evaluate the performance of the smart firewall, two widely accepted benchmark datasets 

were used: 

(a) NSL-KDD Dataset: The NSL-KDD dataset is an upgraded version of the KDD'99 dataset 

that eliminates superfluous records and better represents real-world attack scenarios. It 

classifies traffic as normal and DoS, Probe, R2L, and U2R attacks with 41 features per record. 

The dataset has balanced harmful and benign samples in training and testing subsets. 

(b) CICIDS 2017 Dataset:  A more modern and comprehensive intrusion detection 

benchmark, the CICIDS 2017 dataset covers current attack methods and realistic network 

traffic. The attacks include DDoS, PortScan, Botnet, Brute Force, and Infiltration. Labeled 

network traffic containing flow-based information including timestamp, flow duration, 

protocol type, packet length, and byte count is useful for categorization and anomaly detection. 

The datasets were pre-processed to eliminate missing values, standardized for uniform scaling, 

then split 80:20 into training and testing sets. 

5.2 Evaluation Metrics 

To assess the efficacy of the firewall architecture, the following standard classification and 

detection metrics were used: 

Accuracy (ACC): Measures the proportion of correctly classified samples (both benign and 
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malicious) over the total number of samples. 

Accuracy =  
TP + TN

TP + TN + FP + FN
 

Precision: Indicates the ratio of correctly predicted positive observations to the total 
predicted positives. 

Precision =  
TP

TP + FP
 

Recall (Sensitivity): Measures the ability of the model to correctly identify all relevant 

positive samples. 

Recall =  
TP

TP + FN
 

F1-Score: The harmonic mean of precision and recall. Useful when the class distribution is 

imbalanced. 

F1 =  2 ∗  
Precision ∗ Recall

Precision + Recall
 

False Positive Rate (FPR): The proportion of benign traffic incorrectly flagged as malicious. 

FPR =  
FP

FP + TN
 

Where: 

• TP: True Positives 

• TN: True Negatives 

• FP: False Positives 

• FN: False Negatives 

5.3 Results Table 

Table 1: Performance Metrics on NSL-KDD Dataset 

Model Accuracy Precision Recall F1-Score FPR 

Random Forest 94.2% 0.935 0.948 0.942 3.1% 

Autoencoder 91.5% 0.900 0.931 0.917 2.4% 

Hybrid Model 96.7% 0.962 0.968 0.965 1.8% 

Table 1 provides a comparative analysis of the classification performance of three models—

Random Forest, Autoencoder, and the proposed Hybrid Model—on the NSL-KDD dataset, 

which includes various types of network intrusions. The results clearly demonstrate that the 

Hybrid Model significantly outperforms both the traditional Random Forest classifier and the 

Autoencoder in all performance metrics. The Hybrid Model achieves the highest accuracy of 

96.7%, indicating that it correctly classifies the largest proportion of both benign and malicious 

packets. It also reports the highest precision (0.962) and recall (0.968), reflecting its ability to 

minimize both false positives and false negatives effectively. The F1-Score, which balances 

precision and recall, peaks at 0.965, further confirming the robustness of the model. Most 

importantly, the Hybrid Model maintains the lowest False Positive Rate (FPR) at 1.8%, which 

is crucial for real-time firewall applications, as it minimizes unnecessary blocking of legitimate 

traffic. These results emphasize the efficacy of combining supervised learning (SVM or 

Random Forest) with unsupervised anomaly detection (Autoencoder) and a dynamic rule 

engine for improved intrusion detection.  

Table 2: Performance Metrics on CICIDS 2017 Dataset 

Model Accuracy Precision Recall F1-Score FPR 

Random Forest 92.8% 0.910 0.933 0.921 4.2% 

Autoencoder 89.7% 0.872 0.910 0.890 2.9% 

Hybrid Model 95.6% 0.954 0.957 0.955 1.6% 

Table 2 presents the model performance on the more modern and complex CICIDS 2017 

dataset, which captures a wider variety of real-world attack scenarios including DDoS, brute 
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force, and botnet traffic. Once again, the Hybrid Model delivers superior performance across 

all evaluated metrics. With an accuracy of 95.6%, it surpasses both the Random Forest (92.8%) 

and the Autoencoder (89.7%), highlighting its ability to adapt to contemporary and diverse 
threat patterns. The Hybrid Model also shows higher precision (0.954) and recall (0.957) than 

its counterparts, which is critical in ensuring both detection of attacks and the prevention of 

misclassifications. The F1-Score of 0.955 reaffirms its balanced classification capabilities. 

Notably, the False Positive Rate is reduced to 1.6%, the lowest among all models, showcasing 

the model's ability to distinguish between normal and abnormal behavior with high specificity. 

In contrast, the Random Forest model shows a significantly higher FPR of 4.2%, which could 

lead to undesirable interruptions in legitimate network activity. These findings validate the 

proposed system’s applicability in operational environments with dynamic and evolving 

threats. 

Table 3: Detection Rates by Attack Type (NSL-KDD) 

Attack Type RF Autoencoder Hybrid Model 

DoS 93.4% 91.2% 97.6% 

Probe 90.5% 88.1% 94.8% 

R2L 83.3% 81.0% 88.5% 

U2R 72.9% 74.6% 80.4% 

Overall 94.2% 91.5% 96.7% 

Table 3 shows how the Random Forest (RF), Autoencoder, and suggested Hybrid Model detect 

DoS, Probe, R2L, and U2R attacks in the NSL-KDD dataset. The investigation shows that the 

Hybrid Model outperforms the other two in all attack types. The Hybrid Model detects 97.6% 

of DoS attacks, which are easier to detect due to their volume and frequency, topping RF 

(93.4%) and Autoencoder (91.2%). Probe attacks, which entail network surveillance and are 

often subtler, are detected by the Hybrid Model at 94.8%, compared to RF's 90.5% and 

Autoencoder's 88.1%. The Hybrid Model excels at managing low-frequency, covert attacks 

like R2L and U2R, which are difficult to detect due to their resemblance to typical traffic. 

Hybrid Model detects R2L at 88.5%, exceeding RF (83.3%) and Autoencoder (81.0%). In the 

key U2R category, which targets system-level access, the Hybrid Model increased to 80.4%, 

compared to 72.9% for RF and 74.6% for Autoencoder. Combining supervised and 

unsupervised learning improves the system's capacity to detect high-volume and stealthy 

attacks, increasing the detection rate to 96.7% from 94.2% for RF and 91.5% for Autoencoder. 

In real-world firewall applications, the Hybrid Model is ideal for complete threat detection. 

Table 4: False Positive Rates by Protocol Type (CICIDS 2017) 

Protocol RF Autoencoder Hybrid Model 

TCP 3.6% 2.3% 1.5% 

UDP 4.8% 3.1% 1.9% 

ICMP 5.2% 2.8% 1.2% 

Average 4.5% 2.7% 1.6% 

Table 4 compares the False Positive Rate (FPR) of the Random Forest, Autoencoder, and 

Hybrid Model across TCP, UDP, and ICMP protocols in the CICIDS 2017 dataset. Firewalls 

must measure FPR to determine the percentage of legal traffic wrongly classified as harmful, 

which can disrupt service and lower user trust. The Hybrid Model has the lowest FPR across 

all protocol types, proving its better specificity and precision. The Hybrid Model has a 1.5% 

FPR for TCP traffic, which makes up most internet traffic, compared to 3.6% for RF and 2.3% 

for Autoencoder. It handles high-traffic, stateful connections reliably. The Hybrid Model's FPR 

for connectionless UDP traffic, utilized in DNS, VoIP, and streaming applications, is 1.9%, 

compared to RF's 4.8% and Autoencoder's 3.1%. The Hybrid Model's accuracy helps 

diagnostic protocols like ICMP (ping, traceroute), which has an FPR of 1.2% compared to 5.2% 

for RF and 2.8% for Autoencoder. The Hybrid Model reduces alarms and blockages with an 
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average FPR of 1.6% across all procedures. This is far better than the RF model's 4.5% and the 

Autoencoder's 2.7%. These results show that the Hybrid Model identifies a wide range of 

assaults and maintains network integrity across protocols, making it ideal for real-time and 
enterprise-grade smart firewall systems. 

Table 5: Training and Inference Time Comparison 

Model Training 

Time (sec) 

Inference Time per 

Packet (ms) 

Remarks 

Random Forest 180 0.78 Fast inference, moderate training 

Autoencoder 320 0.65 Longer training, lightweight at run 

Hybrid Model 510 1.05 Heavier but more accurate 

Table 5 compares the training duration and inference efficiency of the smart firewall 

architecture's Random Forest, Autoencoder, and Hybrid Model implementations. The Random 

Forest model has the quickest training time of 180 seconds and a modest inference time per 

packet of 0.78 milliseconds, making it ideal for rapid deployments and low latency. As said, its 

poor detection accuracy limits its utility in complex threat settings. Due to its layered neural 

architecture, Autoencoder, which uses unsupervised learning for anomaly detection, trains in 

320 seconds, longer than Random Forest. Its lowest inference time of 0.65 ms per packet shows 

that it can efficiently process incoming traffic once trained, which is useful in high-throughput 

settings. The Hybrid Model, which uses supervised and unsupervised learning and a rule-based 

decision engine, takes the longest to train at 510 seconds. This is expected due to module 

complexity and interaction. Additionally, its inference time per packet is 1.05 ms, significantly 

greater than the other models but still suitable for near-real-time detection systems. Its higher 

accuracy and lower false positive rate justify its slower speed, making it a good contender for 

real-world firewall applications that require precision detection and system responsiveness. 

Table 6: Resource Utilization Analysis (on NVIDIA RTX 3060, 32GB RAM) 

Model CPU Usage 

(%) 

GPU Usage 

(%) 

RAM Usage 

(GB) 

Model Size 

(MB) 

Random Forest 45 0 2.1 18 

Autoencoder 35 60 2.8 22 

Hybrid Model 58 65 3.9 30 

Table 6 shows how the three models consume system resources on a basic high-performance 

workstation with an NVIDIA RTX 3060 GPU and 32 GB RAM. Random Forest requires 45% 

CPU and has no GPU requirement, making it excellent for CPU-bound or GPU-limited 

systems. Its 2.1 GB RAM and 18 MB model size make it lightweight for embedded or edge 

systems. The Autoencoder model relies on concurrent deep learning with 60% GPU. It has 2.8 

GB RAM and 22 MB size, making it heavy but workable. Table 5 illustrates GPU acceleration's 

rapid inference times. Hybrid Model, which uses architectural and rule-based logic, requires 

the most resources: 58% CPU, 65% GPU, and 3.9 GB RAM for 30 MB. Even though they're 

the most resource-intensive, these values are fine for modern security solutions, especially in 

cloud or enterprise networks. For accuracy- and efficiency-focused companies, its increased 

detection performance and reduced false positives justify the resource trade-off. 

Table 7: Ablation Study of Hybrid Firewall Components (NSL-KDD Dataset) 

Configuration Accuracy F1-

Score 

FPR 

Only SVM (no autoencoder, no rule engine) 93.5% 0.934 3.6% 

SVM + Rule Engine (no autoencoder) 94.9% 0.948 2.9% 

Autoencoder + Rule Engine (no supervised SVM) 92.3% 0.920 2.2% 

Full Hybrid (SVM + AE + Rule Engine) 96.7% 0.965 1.8% 
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SVM classifier, Autoencoder (AE) for anomaly detection, and Rule Engine for dynamic 

decision-making are the fundamental components of the proposed Hybrid Smart Firewall. 

Table 7 shows an ablation study of their separate and combined contributions. This analysis 
determines each module's performance impact and validates the synergistic effect when 

integrated. The SVM configuration without Autoencoder or Rule Engine had 93.5% accuracy, 

0.934 F1-Score, and 3.6% FPR. SVM performs well as a standalone supervised classifier, but 

its lack of contextual anomaly detection and adaptive logic makes its decision-making less 

exact. The Rule Engine improves accuracy to 94.9%, F1-Score to 0.948, and FPR to 2.9% when 

added to the SVM. Rule-based intelligence uses classification context and past trends to 

sharpen decisions. When equipped with Autoencoder and Rule Engine (without SVM), 

accuracy reduces to 92.3% and FPR drops to 2.2%, suggesting that while Autoencoder is 

slightly poorer in classification than SVM, it raises fewer false alarms. Good but not ideal 

detection balance is shown by its F1-Score of 0.920. The Full Hybrid configuration with SVM, 

Autoencoder, and Rule Engine performs best: 96.7% accuracy, 0.965 F1-Score, and 1.8% FPR. 

With SVM improving classification, Autoencoder improving anomaly detection, and Rule 

Engine dynamically harmonizing their outputs, each module contributes individually to the 

system. Their integration improves robustness, detection precision, and misclassification, 

making the entire Hybrid Model better for complicated network deployment. 

6. Conclusion 

The proposed Smart Firewall Architecture effectively combines supervised learning, 

unsupervised anomaly detection, and a dynamic rule engine to address modern cybersecurity 

challenges. Unlike traditional firewalls, this AI-driven model adapts to evolving threats such 

as zero-day attacks and APTs. Experimental results on NSL-KDD and CICIDS 2017 datasets 

show that the Hybrid Model achieves superior accuracy, low false positive rates, and robust 

detection across diverse attack types. The ablation study confirms that each component adds 

value, with the full integration yielding the best performance. While it requires more training 

time and resources, it remains efficient for real-time applications. In conclusion, AI integration 

transforms firewalls from reactive to proactive systems, offering a scalable, intelligent, and 

future-ready defense solution for today’s complex threat landscape. 
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