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Introduction

Over the course of the past decade, the use of Bayesian approaches in the field of econometrics
has become an increasingly significant component. There is little question that this is being
fueled by a growing recognition of the benefits that Bayesian inference provides. In particular,
it gives us a formal mechanism to include the previous information that we frequently hold
before viewing the data, it fits in nicely with sequential learning and decision making, and it
immediately leads to exact small sample findings. All of these benefits come as a result of the
fact that it was developed. In addition, the Bayesian paradigm is especially well-suited for
prediction since it takes into consideration the uncertainty of any and all parameters, as well as
the model itself. The predictive distribution is the sampling distribution in which the parameters
are integrated out with the posterior distribution. The predictive distribution is precisely what
we need for predicting, which is frequently one of the primary goals of time-series research. In
most cases, the selection of a specific econometric model is not prespecified by theory, and the
consideration of a wide variety of competing models is possible. The so-called posterior odds,
which are calculated by multiplying the prior chances by the Bayes factor, are one way that a
formal comparison of models may be carried out inside a Bayesian framework. The Bayes
factor between any two models is the ratio of the likelihoods integrated out with the appropriate
prior and summarises how the data favour one model over another. Bayes factors are calculated
using the likelihoods integrated out with the prior. This automatically leads to posterior model
probabilities whenever there is a collection of plausible models to consider. A natural technique
to deal with model uncertainty is to utilise the posterior model probabilities to average out the
inference (on observables or parameters) pertaining to each of the different models rather than
selecting a single model. This is preferable to the alternative of selecting a single model. The
term for this technique is the "Bayesian model average.” The latter was first stated in Leamer
(1978), and recent applications to economic issues include Fernandez' et al. (2001) for growth
regressions, Garratt et al. (2003) for macroeconomic forecasting, and Jacobson and Karlsson
(2004) for microeconomic forecasting. The specification of prior distributions for all
parameters in the model that are viewed as unknown is an obligatory prerequisite for utilising
the Bayesian paradigm. This is an unavoidable need for adopting the Bayesian paradigm. This
topic has been the subject of significant dispute, with the argument about whether prior should
be applied to the coefficients of basic autoregressive models serving as an excellent illustration
of this. When seen from a sampling theoretical vantage point, the problem of testing to see if
there is a unit root (determining whether or not to difference the series before modelling it
through a stationary model) is fraught with a great deal of difficulty. Comparing models in
terms of their posterior chances offers a highly natural Bayesian approach to testing that does
not rely on asymptotics or approximations. This method can be found in the paper "Comparing
Models in Terms of Their Posterior Odds.” It is, of course, sensitive to how the competing
models are defined (for example, should we contrast the stationary model with a model that
has a root that is greater than or equal to one? ), as well as to the choice of prior. The latter
concerns have resulted in significant debate within the academic community, and as a result, a
special issue of The Journal of Applied Econometrics was published with a lively discussion
centering on the chapter written by Phillips (1991). The last chapter argued in favour of
employing Jeffreys' principles as a way to reflect previous ignorance of the parameters (for
further discussion on this topic, see Chapter 6 of Bauwens et al., 1999). Prediction, much like
the selection of one model over another competing model, may also be significantly impacted
by the prior. In point of fact, prediction is frequently much more sensitive than parameter
inference to the choice of priors (especially on autoregressive coefficients). Furthermore, Koop
et al. (1995) demonstrate that imposing stationarity through the prior on the autoregressive
coefficient in a simple AR(1) model does not necessarily lead to stabilisation of the predictive
variance as the forecast horizon increases.
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Bayesian Computational Method
The availability of very efficient and flexible algorithms for conducting inference through
simulation in combination with ever more powerful computing facilities has made the Bayesian
analysis of non-standard problems an almost routine activity. This has contributed to the
increased use of Bayesian methods in econometrics, which is at least in part a consequence of
the availability of these algorithms. In particular, the application of Markov chain Monte Carlo
(MCMC) methods has resulted in the creation of a highly helpful class of computer algorithms
and has sparked a true revolution in the process of using Bayesian approaches. Bayesian
inference, which before to the year 1990 was at best a challenging task in practise, reserved for
a few number of specialised researchers and limited to a pretty restricted range of models, has
now become a highly accessible method that can reasonably simply be used to nearly any
model. This is in contrast to the situation before 1990, when it was limited to a very restricted
set of models and was reserved for a small number of specialised researchers. The notion
behind Markov chain Monte Carlo (MCMC) methods is that inference may be made about an
analytically intractable posterior (typically in high dimensions) by producing a Markov chain
that converges to a series of drawings from the posterior distribution. This is the primary
concept behind MCMC methods. Once one has such a chain of drawings, one can obviously
instantly engage in predictive inference as well due to the availability of this information. It is
possible to create a Markov chain in a number of different ways, the specifics of which are
determined by the nature of the problem. The Gibbs sampler and the Metropolis Hastings
sampler are the ones that are utilised the most frequently. It is possible to simplify the
implementation of the MCMC sampler by making use of data augmentation, which involves
the addition of auxiliary variables to the sampler. As a result, the analysis is often carried out
on an augmented space that incorporates not only the model parameters but also items like
latent variables and missing observations. Gamerman (1997) is an example of a resource that
is easily accessible and discusses MCMC approaches. As a result of this, we are now able to
undertake Bayesian analysis of time series models that have been around for a long time (such
as ARMA models), as well as of more recent additions to our library of models, such as Markov
switching and nonparametric models, and the literature is quite extensive. This is made possible
by the fact that Bayesian analysis can now be applied to models that have been around for a
long time. As a result, | will have to exercise discretion and will make an effort to focus on a
chosen number of topics that I consider to be of great importance. I am hoping that this can
provide some insight into the potential function that Bayesian approaches can fulfil in
contemporary time series analysis.
Scope of study
This model has the potential to be extremely supporting and may be utilised to obtain the
requisite performance of Bayesian approaches in the statistical analysis of time series. Even
the most complicated time series models are now possible to be analysed using Bayesian
methodology thanks to the application of Markov chain Monte Carlo techniques. Models such
as ARIMA models and their fractionally integrated equivalents, state-space models, Markov
switching and mixing models, and models that allow for time-varying volatility are some of
the models that are explored in some length in this chapter. A summary of various current
techniques to nonparametric Bayesian modelling of time series is presented in the concluding
section.
Examination
Data called local field potentials, or LFPs, were gathered from rats in order to investigate the
neural activity that is involved in feature binding. Feature binding is the process by which the
brain combines several types of sensory information into a single neural representation (Botly
and De).
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Rosa, 2009; Ljubojevic et al., 2013). For the purpose of recording neural activity throughout
time, LFP makes use of pairs of electrodes that are implanted directly in local brain areas of
interest. In this instance, the prefrontal cortex (PFC) and the posterior parietal cortex (PPC) are
the brain regions that are of interest. The rats were given two different sets of tasks to complete:
one set needed them to process numerous stimuli in order to get a reward (known as feature
conjunction, or FC), while the other set only required them to process a single stimulus in order
to obtain a reward (known as feature singleton, or FS). Both sets of activities were designed to
test the rats' ability to recognise patterns in the stimuli they were exposed to. In FC, feature
binding is performed, but in FS, a baseline may be established. During each of the tasks, which
consisted of 20 separate trials for the FS and the FC, electrodes that had been implanted in the
PFC and the PPC monitored the activity of the neurons. As a result, the raw data signal is a
bivariate time series with 40 replications for each rat. In Figure a, we present an illustration of
the bivariate signals for one of the replications. We will refer to the behavior-based laboratory
estimate of the time at which the rat processed the stimuli as t. Each signal replicate lasts for
three seconds, and the length of the signal has been centred around this estimate.
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(a) The bivariate LFP signal. (b) The associated (log-) spectra and squared coherence.

Figure: The unprocessed LFP data collected from a rat during an FS experiment. The
estimated amount of time, denoted by t, that the rat spent processing the stimuli is
indicated by the vertical lines.
The behaviour of these bivariate signals as it varies over time, as well as the interplay between
them, is of particular interest to us. Utilising time-frequency analysis is an obvious way to
address the problem; however, accurate inference for typical time-frequency processes is not
yet accessible. Using time-frequency approaches to turn the bivariate signal into an MFTS,
which makes available the multivariate modelling and inference capabilities of the MFDLM,
is an option that has a lot of potential and should be considered. Since the MFDLM offers
smoothing in both the frequency domain T and the time domain T, we may employ time-
frequency preprocessing that only delivers a little amount of smoothing since it operates in the
time domain T. In the time domain, the signal is divided into time bins with a width equal to
one-eighth the duration of the original signal, and the bins that are next to one another have an
overlap of fifty percent in order to avoid unwanted boundary effects. Within each time bin, we
compute the periodograms of the bivariate signal as well as the cross-periodogram of the signal.
Let q',:l:'(r') and q',""(. 7) . . ;

be the discrete Fourier transforms of the PFC and PPC signals,
respectively, for time bin t evaluated at frequency t , after removing linear trends. The

: L) = |g”P forc = 1,2 . .
periodograms are 't \7) = lde I for« and the cross periodogram is
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]M: () = (1) l'.’_l, () ) ) )
¢ (7] =900 where ' % s the complex conjugate of q (2) t . The cross-periodogram
is generally complex-valued, and if the periodograms are unsmoothed, then |
]‘l:’.; ) 2 _ 1.1',-(’,'1':2;.7_) _ o ) )
(7)) ' \7) is real-valued, yet it is abundantly evident that it does not offer any
novel information (Bloomfield, 2004). This does not indicate that the cross-periodogram is not
relevant; rather, it suggests that the periodograms require some frequency domain smoothing.
To generate the smoothed periodograms, often known as spectra, we use a modified version of
the Daniell kernel, as recommended by Shumway and Stoffer (2000). Each time bin is then

. . . (T7),e= 1,2,3 . .
divided into five segments, and the totals are computed. S within each

segment, and then average the resulting periodograms using decreasing weights determined by

I (1), welet V' (1) =

t

the modified Daniell kernel. Denoting these spectra by

log (1’ ['”) for = 1.2, \nhen the log transformation is advantageous since it is the
variance-stabilizing transformation for the periodogram (Shumway and Stoffer, 2000). This
makes the log transformation an interesting option. One option available to take into
consideration the periodic dependency that exists between signals is the log-cross-spectrum,

I @)R).
log. (1' ' ) An appealing alternative is the squared coherence defined by
s2(r) = |[L(0PIE" (D) (1)),

< wi7) <1

which satisfies the constraints " and is
the frequency domain analog to the squared correlation (Bloomfield, 2004). Since specifies

) s - ® (3
that YA e R, we transform the squared coherence and let Y,

! :[0,1] = R 4 _ .
where is a known__monotone function; we use the Gaussian quantile

~A3) 2\
function. We have found that fitting ¢ (™)

() = 27 (k3(7)) € R,

produces very similar results to fitting k 2 t (t)
| | _ b (u"())

directly, yet in the transformed case, our estimate of the squared coherence

complies with the requirements. As a result of the Bayesian methodology that we employ, this

modification does not prevent inference.

Distribution of Bayesian Method:

In a broader sense, this method may be used to '-dimensional time series, which, when

combined with either the squared coherence or the cross-spectra, results in a C = '('+1)/2-

dimensional multifractal time series (MFTS). In Figure b, we present an example of the MFTS

that was produced by a rat when it was participating in an FS experiment. In the sake of

thoroughness, we have also included the logcross-spectrum, even though it is not a part of the

MFTS.

We employ the typical FLCs model described in Section in conjunction with a random walk

model for the factors, which are as follows:

Yiour) = T BELcfulr) + €0u(r),  [ddu()lody] " N(0,02,)
A (2.9)
.Lgk,l.:.( o 1{3}:4..&.{—[ f w.‘-'.l.ﬁ.f' {UL:..-‘.r \\"‘j ‘“:\1: i ~\.(0- \\,7.‘. l
(1) () ’ ~e)
kist — ('77;\,‘.,{ """" ) ist) e }:..-.I .

where are the log-spectra for ¢ = 1, 2 and the probit-
transformed squared coherences forc=3,i=1, ..., 8 index therats,s=1, ..., 40 index the
trials for each rat, and t =1, .. ., 15 index the time bins for each trial. The joint indices (i, s, t)
in correspond to the time index t in and are used to specify independence of the residuals wk,i,s,t
between rats and between trials. For each initial time bin

= ~ N(0,10'Tcxe), . . . .
L, welet By 10,107Texc), since the corresponding observations are only time-

ordered within a trial. The C x C factor covariance matrices Wk do not depend on the rat or the
trial, and can help summarize the overall dependence among factors. For simplicity and
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parsimonious modeling, assumes independence between ok,is,t and j,i,s,t for

j# kef{l,... K}

For the error variances, we use the conjugate priors
n’jf ~¢ Gamma (0.001,0.001) and W’[' = Wishart((pR) . p), .
' with R—1 = ICxC, the
expected prior precision, and p = C > rank(R—1 ). We provide the full conditional posterior
distributions in Appendix A.

To determine the effects of feature binding, we compare the values of Hi st (T) during the
interval between the FS and FC trials. We estimate posterior distributions for the sample means
by letting Si,F C (respectively, Si,F S) be the subset of FC (respectively, FS) trials for which
rat i got the reward. This allows us to calculate the posterior probability of each sample mean.

//!d(Tl
Z?:I [1:«‘ l,-' Z—~ £ Hi () _s,l,_ ol X /'Iefj-l'.r"'-j'
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8 [ 1 (3) ,_ 1 (3) /.
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We
investigate the difference in the log-spectra and the squared coherences between the FC trials
and the FS trials by taking an average of the results across all rats and across all trials in which
the rat responded appropriately to the stimuli. This restriction is significant because it
eliminates trials that are not typical of the population being studied, in particular FC trials in
which feature binding may not have taken place.
Conclusions
A broad framework for modelling complicated dependency among functional data is provided
by the MFDLM. Because we isolate the functional component by means of the proper
conditioning and incorporate the requisite identifiability requirements, we are able to model
the remaining dependency utilising scalar and multivariate modelling techniques that are
already well known to us. Using the hierarchical Bayesian method, we are able to incorporate
interesting and helpful submodels in a seamless manner. Some examples of these are the
common trend model described in Section, the stochastic volatility model described in Section,
and the random walk model described in Section We represent the functional component as a
collection of smooth and optimum curves that are constrained by (identifiability) requirements
using a combination of Bayesian spline theory and convex optimisation. We execute inference
on any parameters of interest, such as (c) t in the LFP example, by obtaining posterior samples
of all of the unknown parameters in using an efficient Gibbs sampler. This enables us to
perform inference on any parameters of interest. The adaptability and versatility of our
technology is demonstrated by the two distinct applications that we have developed. The
common trend model presented in Section offers helpful insights into the interconnections
between the yield curves of many economies, and the LFP example shown here gives a unique
method to time-frequency analysis through the application of MFTS. In these applications, the
MFDLM accurately models a variety of functional dependence structures, such as time
dependence, (time-varying) contemporaneous dependence, and stochastic volatility.
Additionally, the MFDLM is able to readily accommodate additional dependence structures,
such as covariates, repeated measurements, and spatial dependence. An R package based on
our methodologies is currently in the process of being developed.
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