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ABSTRACT

The Fractional Reduced Differential Transform Method (FRDTM) is a powerful and efficient
tool for solving fractional differential equations, which frequently arise in various fields such
as biology, physics, and engineering. This paper explores the application of FRDTM to three
distinct fractional mathematical models: the transmission of nerve impulses through the
Fitzhugh-Naguma equation, the time fractional Rosenau-Hyman equation, and a bio-
mathematical model for the evolution of smoking habits in fixed populations. The method's
accuracy and effectiveness are evaluated through error analysis and graphical approaches,
demonstrating its superiority over traditional methods like the Homotopy Perturbation
Method (HPM) and Adomian Decomposition Method (ADM). Numerical results confirm that
FRDTM not only provides precise solutions but also significantly reduces computational
complexity. This study highlights the potential of FRDTM as a reliable approach for solving
complex fractional mathematical models, contributing to advancements in theoretical and
applied mathematics.

Keywords: Fractional Reduced Differential Transform Method (FRDTM), Fractional
Differential Equations, Fitzhugh-Naguma Equation, Rosenau-Hyman Equation, Bio-
Mathematical Model, Error Analysis, Numerical Solutions.

1. INTRODUCTION

Here, we'll look at how the FRDTM may be used to solve biological systems models like the
transmission of nerve, the time fractional Rosenau-Hymanequation, and an out-of-the-
box model for the change of smoking habits in fixed populations. Error analysis and graphical
approaches are used to evaluate the suggested method's accuracy.

2. FRDTM FOR FRACTIONAL MATHEMATICAL MODEL FOR TRANSMISSION
OF NERVE

This part uses the FRDTM to solve the Fitzhugh-Naguma fractional equation. When
compared to HPM and ADM, the numerical solution found using this approach produces very
accurate results. Using the suggested method, the nonlinear fractional partial derivative
equations may be solved effectively. We consider the fractional Fitzhugh-Naguma equation as
pursue:

Uta:Uxx+U(U_8)(1“U),

Uty =UxxHUP—UB—ud+us, (1.1)
where § is arbitrary constantand 0 < 6 < 1.
Research into the transmission of nerve impulses is shown in the equation (1.1). In biology,
population genetics, and circuit theory, Equation (1.1) has several applications. The Fitzhugh-
Naguma classical equation was solved using HPM, VIM, and ADM.
Solutionby FRDTM
We have following recurrence formula for equation (1.1)

U1 (®) =

r( k 02
F(ofﬁi O)(k) UG + (1 +6)Z U, (U1 () — ZO Z Ui (Ui () Upr (x) — 8Uy ()
with initial conditions (1.2)

Uo(x) = 1+ tanh( x.)
(1.3)

Using recurrence relation (1.2) and initial condition (1.3), we get for k=0
02
U3 (9 = s [ 322 Uo 00 + (8 + DUZ () — UF(9) — 8Uo ()]

0200 = st s (G + o () + (18 (3 Juann ()

-+ 3ann () -5 (33 h(“))]
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U209 = i [~ sec 0° (537) tan 1 ()

+ <§ +~tan h (IX)> {(1 +6) ( nh (%)) - <§ +~tan h (%))2 —~ 8}]
U, () = = sech? (2) similarly we get,
Uz (0 = — e G297 tanh h (2) sec h? (2)

Therefore the approximate solution of (1.1) is known as

Ut = (l + ltanh (@) 4t (=29

4 F'(a+1) 8 ech? (%)
a1 tanh (7) sech” (C") ) a=1
CA-28 tanh (@) sec?
4

060 = (& e () 020 e (42) 1 ().

FRDTM's output is exactly in line with the correct answer. The suggested method is tested by
comparing the estimated result with the precise result to see whether it is effective and
accurate.
Table 1.1: FRDTM's precise solution for the fractional Fitzhugh-Nagumaequation and
the absolute inaccuracy of the Il approximation solution
ti/Xi 0.1 0.2 0.3

tZO(

+ . (1.4)

(1.5)

\/—X)

0.1

4.8455 x 10

4.8455 x 10

4.8455 x 103

0.2

3.3554 x 10°

3.3554 x 10

3.3554 x 10°®

0.3

2.7872 x 10°

2.7872 x 10*

2.7872 x 10°®

Table 1.2: The absolute difference between the ninth
ADM and the actual answer

ti/Xi

0.1

0.2

0.3

0.1

4.8455 x 10

4.8455 x 10

4.8455 x 102

0.2

3.3554 x 10°

3.3554 x 10

3.3554 x 10°3

0.3

2.7872 x 10°

2.7872 x 10*

2.7872 x 10°®

estimated numerical solution via

Table 1.3: Theabsolute difference between the fifth estimated numerical solution via
HPM and the actual answer
0.1 0.2
4.0710 x 10*7 | 2.0911 x 10
3.7487 x 1017 | 1.9339 x 1014
3.2283x 107 | 1.6742 x 10

0.3
8.0606 x 107°
7.4868 x 10713
6.5147 x 1071

ti/Xi
0.1
0.2
0.3

w

Figure 1.2: Phase plof of u at order of derivative 0.50
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Figure 5.3: Phase p‘Iot of u at ordér of derivative 1.0
Figure1.4: Phaseplotofu atorder of derivative 0.75
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Figure 1.6: Graph of u atx=1for various order of derivatives
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Figure 1.7: Fitzhugh-Nagumo equation approximation error phase diagram at order of

derivative 1.0

A simple and effective approach for solving the Fitzhugh-Nauma equation is shown in this

section. As can be seen from the comparison with previous work, the presented solutions for

=1 produce efficient approximations to the precise answer only after a few iterations. These

solutions are identical to those provided by Mehdi, Jalil, and Abbas. In addition, the FRDTM

computation is straightforward and easy to understand.

3 FRDTM FOR THE TIME FRACTIONAL ROSENAU-HYMAN EQUATION

(FRH)

Using FRDTM, an analytic approximation solution to the time fractional Rosenau-Hyman

issue is examined in this section. The Caputo-style fractional differentiations are used. When

FRDTM's explanation is compared to the precise answers, it is discovered that the produced

findings are quite close to the exact solution in agreement. Then we conduct a thorough study
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of the FRDTM data up to the second approximation and estimate the inaccuracy. A
comparison table of various numerical solutions shows that the current technique provides a
reliable, efficient, and convergent solution in the form of an easily computable and
convergent series. When liquid drop patterns form, the Rosenau-Hyman time fractional
equation (FRH) comes into play. Methods used by Molliq and Noorani to solve a fractional
Rosenau-Hyman equation include the use of VIM and HPM techniques.

Dlw=uD_(u)+uD_(u)+3D, (u)D_(u)..,

u(x.0)=—(8/3)ccos’(x/4),
with preliminary condition (1.6)
Solutionby FRDTM,
Applying FRTDM on equation (5.6), we find the given upswing relation

T(1+ck) [ 8* ; 8

ealr)= U0V (04 T, (09U, (3)

L= r

.

[lo+ak+1) ox ex

vt Lp e L,m].

—r=d gy at "

with initial conditions

o 2 X
Using recurrence Uplx)= _E’fm{" al condition (5.8), we get (1.8)
Fork=0 )
1 03 d 02
Uy(x) = m(l] (x )6 3 Uo (%) + Uo(x)_Uo(x) h 3—U0(x) 922 Uo@‘))
1 2
Ul(X) = m[—§c sin E] .
For k = 1, we get
1 1
_I'(@+1) a3 0
Upy(x) = rZat1) Z(; Ur(0) 573 Uar(0) + Z(; Ur () 5= Ur-r(x)
~ 9 9?
3 a—Ur(x)ﬁul_rm]
r 1T 03
Uy(x) = %( o(x) U1(x) + U1(x) Uo(x) + UO(x)_Ul(x)

2

Up() g Uy () + 32

+U1(x) Uo(x) +3— g %

62
U1(x) Uo(x)>
3

C
Up(x) = ==
200 = e )
Also so on

ox
x
7

4 :
l';(.\')=c—sml.

C 63 +1) 2
U.lx)= —;cosl

: 12I(4c+1) 2
Finally the approximate solution of problem (5.6) is found as

o= 8 , X 2c%t% x, ¢ 32a X, c*t3® x
ute ) =\ =308 T " 2V sra s D 2 Ve Gar 1 2

cotte x
—_— - 1.9

T2 Gda+ )" ) (19)
Fora = 1, we get
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o = 4c  4c x 2c2t_ x+C3t2 x+c4t3_ x > tt x
u(x,t) = 3 3cos2 3 sm2 c cos2 36 sm2 (12)(24)0052 ,
4¢c  4c¢ x (ct/2)? (ct/2)* 4c  xfcty (ct/2)3
u(x’t)__?_?ws§<1_ 20 w73 (7>_ 3T )

_ 4c 14 x ct+ _x _ct] 4C[1+ (x—ct)} 110
=3 coszcos 5 smzsm > =73 cos 5 (1.10)
which is the exact solution

Table 1.4: Fractional Rosenau-11 Hyman's approximation solution error analysis a

351n2

=land
c-1
X T I1-Approx. Exact Absolute
result by error |Uexact -
FRTDM UrrpTM| @t
a=1
T 0.2 -2.61 -2.61 0.0
4 0.4 -2.6426 -2.642 0.0006
0.6 -2.6628 -2.6609 0.0019
m 0.2 -2.3657 -2.3656 0.0001
2 0.4 -2.4458 -2.4447 0.0011
0.6 -2.5166 -2.5127 0.0039
0.2 -1.9642 -1.964 0.0002
3 0.4 -2.0797 -2.0781 0.0016
4 0.6 -2.1902 -2.1848 0.0054
I 0.2 -1.4667 -1.4664 0.0003
0.4 -1.6 -1.5982 0.0018
0.6 -1.7333 -1.7274 0.0059
Table 1.5: Fifthtermsolution through VIM and HPMwhen a =1
X T VIM HPM
T 0.2 -2.6099 -2.6099
4 0.6 -2.6609 -2.6609
1.0 -2.659 -2.6589
T 0.2 -2.3655 -2.3655
2 0.6 -2.5126 -2.5126
1.0 -2.6127 -2.6127
3 0.2 -0.4893 -0.4893
4 0.6 -0.71125 -0.71125
1.0 -0.9579 -0.9579
s 0.2 -1.4664 -1.4664
0.6 -1.7273 -1.7273
1.0 -1.9725 -1.9725

4 NUMERICAL RESULTS AND DISCUSSIONS

Table 1.4 shows the comparison between the FRDTM results produced at the second
approximation and the precise solution for =1 for various values of x and t. As shown in
Table 1.5, for various X, t values, the approximate solution using 5th iterations of VIM and
HPM for = 1 may be found. The FRDTM is used to solve the Caputo time fractional order
Rosenau-Hyman issue that arises while creating liquid droplets. FRH equation with an initial
condition has a suggested solution in the form of power series, which does not need
discretization, perturbation or He's polynomials. Second approximation results in a great
agreement with the fifth term solutions of VIM and HPM. Convergence times for the
approach are much quicker than for the VIM and HPM, which are used as an approximation
for the technique. Nonlinear fractional derivative problems exist in many fields of practical
mathematics, hence semi-analytical techniques are more effective and efficient.
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Fractional Order Bio-Mathematical Model for the Darwinism of the Smoking Habit
In this section, we'll employ FRDTM to regularly get the infected person's lucidity needed for
the growth of population smoking behaviours. The growth of socially unacceptable
behaviors, such as smoking, obesity epidemics, alcohol and cocaine addiction, has repeatedly
been linked to the etiology of non-fatal disease in a community. In the current study, we
investigate how smoking habits might spread. With the parameter beginning values, we will
utilize actual, real-world data. The following presumptions will be taken into account:

1. Aregular population is fix that is the birth and death rates are equal but not equal to zero;

2. The total number of individual is unique, but is constantly renewed.

3. Non-smokers are those who have never smoked, regular smokers are those who smoke
less than 20 cigarettes per day, heavy smokers are those who smoke more than 20
cigarettes per day, and ex-smokers are those who have previously smoked. They are
represented by X, Y, S, and B, respectively. The result is a fractional mathematical model
for the development of a smoking habit.

D&x(e) =9 — (dy + 9)x(e) + dox?(e) + (df — ,B)x(e)(y(e) + s(e)) + < >x(s)b(s), (1.11)
DEy(e) = Bx(e)(y(e) + 5(€)) + pb(e) + as(e) — (¥ + A+ 9 + df)y(e) + dox()y(e)

do +ds
+dfy(£)(y(£) + s(s)) + < > )y(s)b(e), (1.12)

do + dy
2

do +dy

DZs(e) =yy(e) — (a + 8 +9 + d)s(e) + dox(e)s(e) + drs(e) (v(e) + s(e)) + < >s(£)b(£) ,(1.13)

do + dy
DZb(e) = Ay(e) + 8s(e) — (p +9+ > )b(s) + dox(e)b(e) + dfb(e)(y(e) + s(e))

" <—d° s ) b2(e) (1.14)

X = % VY= ; ,S= % b= % where P shows the total fix population.
Solutionby FRDTM,
By using FRDTM in equation (5.11)

X1 (8) = o2 [96 (k) — (do + 9)X (&) + do T Xy () Xie—y (&) + (dy —
B) Zko Xy (&)Yiey (&)

where ¥ = 0.01,d, = 0.0087,d; = 0.0132, 5 = 0.0381, p = 0.0425,a = 0.1244
y =0.1175,41 = 0.0498, 5 = 0.0498

with preliminary condition

X(0) =0.5045 , S(O)=0.1559, Y(O) = 0.2059 , B(O)=0,1337

We get
X.(e) = AT o [0 — (do + 9)(0.5045) + d(0.5045)% + (d; — $)(0.5045)(0.2059)
+(ds — B)(0.5045)(0.1559) + (do er df) (0.5045)(0.1337)
X.(e) = [(0.01) — (0.0087 + 0.01)0.5045 + 0.0087(0.5045)?

ri+a
+(0.0132 — 0.0381)(0.5045)(0.2059) + (0.0132 — 0.0381)(0.5045)(0.1559)

0.0087 + 0.0132
( - ) (0.5045)(0.1337)]
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Xi(8) = oy [(001) = (0.0094) + (0.0022) = (0.0026) — (0.0019) + (0.0007)]
1
Xl(é') = m [(—0001)] (116)
k k
ra k
e (®) = et o | 2 B @iy (&) + ) B ()51 (6) + pBu(e) + aSil)
y=0 y=0

—(y +A+9 +d)Y(e) + do z X, (e)Yiey () + dy z Y, (6)Yieoy ()

y=0 y=0
: do +d;\ \
+d, Z Y ()Sey () + Z Y, (€)Bi_y (&) (1.17)
=0 v=0
Fork=0
e =ra +1) [BXoYo + BXoSo + pBo + aSo — (¥ + A+ 9 + df )Yy + do(XoYo)
do+d
+df(Y0Y0) + dp (%S0) + (*5) Yo Bo

Yi(e) = e +1) [(0.0381)(0.5045)(0.2059) + (0.0381)(0.5045)(0.1559) + (0.0425)(0.1337)
+(0.1244)(0.1559) — (0.1175 + 0.0498 + 0.01 + 0.0132)(0.2059)
+(0.0087)(0.05045)(0.2059) + (0.0132)(0.2059)? + (0.0132)(0.2059)(0.1559)

(W) (0.2059)(0.1337))

Yi(e) = [0.0039 + 0.0029 + 0.056 + 0.0193 — 0.039 + 0.0009 + 0.0005 + 0.0004 + 0.0003]

N =rog +1) [—0.0052] (1.18)

Using FRDTM in equation (5.13)

uk+1]l

-M——[ T (e)- a+§+3+d Is, (sl+n’7 X (e)s, (e)
(ot + o +1) ;

S0y €)Yy () + drEh—0S) ()Secy (&) + () SK oS, ()Bucy(6)  (1.19)
Fork-—O
Si(e) = [VYB(S) (a +6+9 +'df)50(5)'+ do(Xo(€)So(€)) + dr(Sp(e)Yo(e))

F(a+1)
+dp (S0()S0(8)) + (L) (So()Bo ()]

$1(6) = 775 [(0.1175)(0.2059) — (01244 + 0.0498 + 0.01 + 0.0132)(0.1559)
+(0.0087)(0.5045)(0.1559) + (0.0132)(0.2059)(0.1559)

+(0.0132)(o 1559)% + (222212 (0.1559)(0.1337)

S,(e) = [0.0241 — 0.0307 + 0.0006 + 0.0004 + 0.0003 + 0.0002],
S,(e) = (—0.0051) (1.20)

do+df

I'(a +1)

r(a+1)

Using FRDTM in equation (5.14)

B = r'(l+ ak)
1T I(ak +a+1)

do + d; :
AY,(€) + 6S, () — <p 9+ >Bk ) + d, Z X, (€)Bi_y ()
v—0

k k
d, +
+dfz B, (£)Ye_y (&) + dfz B, (£)Si_y (€) +< !
=0 =0

2
dy\ &
Z B, (£)Biy ().
= vy—-0
Fork=0

AR yolume-13, Issue-ll 83


mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, January-June 2020, Submitted in May 2020, iajesm2014@gmail.com

1 do + dy
Bi(e) = I"(a—-l-l) [AYO(S) + 6S(e) — <P +9+ 5 )Bo(g) + do(Xo(€)By(€))
do + d;
+d;(Bo(e)Yo(€)) + df (Bo(£)Sp(€)) + ( > > (Bo(€)By (5))]

By(e) = [(0.0498)(0.02059) + (0.0498)(0.1559)

'a+1)
0.0087 + 0.0132
2

- <o.o425 +0.01 + ( )) (0.1337) + (0.0087)(0.5045)(0.1337)

0.0087 + 0.0132
2

[0.01025 + 0.00776 — 0.00848 + 0.00058 + 0.00036 + 0.00027 + 0.00019]

+(0.0132)(0.1337)(0.2059) + (0.0132)(0.1337)(0.1559) + ( ) (0.1337)2]

B =rarD

1

-

T N N N " N i
o = T 15 =20 5 =0 35 &0 - S0

Figure1.9: Plotof X, Y, Sr, Bvs. time atorder of derivative 0.50

o 1 . 1 4 1 . 1 1 1
(o} s " 15 20 28 a0 =1 40 “n

Figure1.10: Plotof X, Y, S, Bvs. time atorder of derivative 0.75

The fractional derivative equation approach, which includes a specific mathematical formula
for smoking habit development in the present population, is used to derive approximations of
solutions in the section above. Accuracy, overall productivity, and dependability are readily
shown in graphic charts of absolute errors and approximations of answers.

5. CONCLUSION

The primary advantage of the suggested numerical approach is its capacity to provide much
superior data in terms of the regular average solution for a specific time span. The creation of
efficient binary schemes for nonlinear fractional ordinary differential equations and their
application to solve mathematical models will help to clarify, quantify, and improve the
aforementioned research goals.
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