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Abstract
With the rapid advancement of digital image editing tools, manipulating images has become
easier than ever. Among various tampering techniques, image splicing—where segments from
one or more images are combined into a single composite—remains a prominent method of
forgery. The implications of such forgeries are significant, particularly in sensitive domains
like journalism, forensics, and social media, where image authenticity is paramount. The
growing accessibility of image editing tools has made image splicing a prevalent method of
forgery, posing challenges for detection.Passive image forgery detection has gained
significant attention in recent years due to the rapid advancements in digital image editing
tools. Among various forgery techniques, image splicing remains a common method for
tampering. Detecting image splicing presents substantial challenges. This paper proposes a
novel algorithm combining deep learning and wavelet transform for spliced image detection.
A Convolutional Neural Network (CNN) is utilized for automatic feature extraction, followed
by Haar Wavelet Transform (HWT). Support Vector Machine (SVM) is then employed for
classification. Additionally, experiments replace HWT with Discrete Cosine Transform
(DCT), followed by Principal Component Analysis (PCA). The algorithm is evaluated on
public datasets (CASIA v1.0 and CASIA v2.0) and demonstrates high accuracy with a
compact feature vector. Results confirm the effectiveness of the proposed approach in
detecting spliced images with improved performance.
Key Words: Image Splicing Detection, Passive Forgery Detection, Convolutional Neural
Network (CNN), Haar Wavelet Transform (HWT), Discrete Cosine Transform (DCT), Support
Vector Machine (SVM).

Introduction
The widespread availability of modern image editing tools, such as Adobe Photoshop, has
made digital image manipulation more accessible than ever. While modifying digital images
is easy, confirming their authenticity using visual inspection alone is challenging. This has
elevated image forgery detection to a critical and active area of research. Digital image
forensics employs two primary techniques: active and passive methods. Active techniques
involve embedding watermarks or digital signatures into images at the time of their creation.
Authentication is verified by matching the extracted watermark with the original. However,
these methods require specialized cameras and pre-processing during image acquisition,
limiting their applicability. Conversely, passive techniques do not rely on prior information
about the image and are capable of authenticating images based solely on their content [1].
Among passive methods, image splicing—a form of forgery where regions from one or more
images are combined to create a tampered image—is particularly prevalent. Spliced images
often appear seamless, making their detection a complex task. image splicing, where two
original images Forged images created through splicing can have far-reaching consequences,
including malicious use that may lead to irreversible harm to society. Existing algorithms for
detecting image splicing forgery often rely on high-dimensional feature vectors, which can
increase computational complexity and reduce efficiency. In this paper, we propose a novel
algorithm for detecting spliced image forgery, leveraging a deep learning approach based on
Convolutional Neural Networks (CNN). CNNs are widely used in deep learning due to their
ability to simultaneously perform feature extraction and classification within the same
network. The convolutional layers in CNNs are optimized during training, reducing the need
for manual feature engineering. Additionally, CNNs require fewer internal connections,
making them computationally efficient [1] [2].
The contributions of this paper include the following:
1. Proposing a CNN-based splicing detection algorithm that employs Haar Wavelet
Transform (HWT) for feature refinement.
2. Exploring alternative configurations, including the use of Discrete Cosine Transform
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(DCT) and Principal Component Analysis (PCA).

Il. Related Work

Over the years, numerous passive images splicing detection algorithms have been proposed,

broadly categorized into three types based on their feature extraction techniques: Local Binary

Pattern (LBP), Markov models, and deep learning.

1. Local Binary Pattern (LBP)-Based Methods

LBP is widely employed for feature extraction in tampered image detection [2. 3].

Han et al.: Proposed a method for extracting Markov features using a maximization and

thresholding strategy. Their approach reduces feature dimensionality while maintaining

classification accuracy, making it computationally efficient for splicing detection.

Bayar et al.: Designed a novel convolutional layer specifically for detecting universal image

manipulations. The deep learning-based approach utilizes a fine-tuned Convolutional Neural

Network (CNN) that eliminates traditional pre-processing steps, resulting in higher accuracy

across diverse manipulation types.

Zhao et al.: Utilized a 2D non-causal Markov model for passive splicing detection. This

method captures dependencies among neighboring pixels in both horizontal and vertical

directions, offering enhanced detection performance in spliced image areas.

Saleh et al.: Presented an approach using Multi-scale Weber Local Descriptors (WLD) for

feature extraction. Their method applies WLD at multiple scales, capturing both fine and

coarse features, which are then classified using SVM for effective forgery detection. [2] [3]

[4] [5].

2. Markov Model-Based Methods

Markov models are extensively used for splicing detection by analyzing spatial and frequency

domain features.

o In[4], spatial features were extracted by analyzing pixel differences in multiple directions,
while frequency domain features relied on DCT coefficients. PCA reduced feature
dimensionality, and SVM with Gaussian RBF kernel classified spliced images.

e An algorithm [5] utilized Quaternion DCT (QDCT) for feature extraction. QDCT was
applied to RGB color blocks, computing directional features for histogram-based SVM
classification.

e In [45], Markov models extracted features from maximum pixel values in DCT.
Even-odd Markov models reduced complexity, but these methods remain computationally
intensive.

3. Deep Learning-Based Methods

Deep learning methods have emerged as powerful tools for image splicing detection.

e Ying et al. [6] proposed a two-stage approach using Stacked Auto-Encoder (SAE).
Wavelet-transformed patches were analyzed, and contextual information integration
improved accuracy. However, limited hidden layers reduced feature extraction efficiency.

e A universal forensic method [5,6] employed a CNN with two convolutional and
max-pooling layers and three fully connected layers, achieving better feature
representation.

e In[7], a CNN with six convolutional and three max-pooling layers extracted features. PCA
reduced feature dimensionality, and SVM performed final classification.

Deep learning techniques outperform traditional methods by automatically extracting robust

features but often require computational resources and complex architectures.

I11. The Proposed Algorithm

The primary goal of this work is to enhance image splicing detection through a deep learning

approach. The block diagram of the proposed algorithm is illustrated in Fig. 2. Deep learning

utilizes multi-layer neural networks where the output of one layer serves as the input for the
next layer. Among various deep learning models, Convolutional Neural Network (CNN) has
proven effective for automatic feature extraction and classification tasks.

A. Overview of the Algorithm

The proposed algorithm employs a CNN for feature extraction, followed by Haar Wavelet

Transform (HWT) for dimensionality reduction and Support Vector Machine (SVM) for final
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classification. The algorithm determines whether an image is spliced or original.

B. CNN Architecture

The CNN architecture in this work comprises six convolutional layers and three pooling

layers, as shown in Fig. 3. It processes an input layer of dimensions 227x227x3227 \times

227 \times 3227x227x3 (representing 227x227 image patches with three color channels). Key

operations in CNN include convolution, non-linearity (activation), and pooling.

o Convolutional Layer: Extracts spatial and temporal features by applying filters across the

image.

e Non-Linearity Layer: Introduces activation functions (e.g., ReLU) to add non-linear

properties.

e Pooling Layer: Reduces the spatial dimensions of the feature maps, retaining essential

information while decreasing computational complexity [7] [8] [9].

The CNN is characterized by sparse connectivity and weight sharing, which makes it

computationally efficient compared to traditional fully connected networks. The output

volume (W2xH2xF) (W_2 \times H_2 \times F) (W2x H2x F) is computed using the
following equations:

W2=WI1-F+2PS+1(1)W_2 =\frac {W_1-F + 2P} {S} + 1 \tag {1} W2 =SW1- F+2P +1(1)

H2=H1-F+2PS+1(2)H_2 =\frac {H_1 - F + 2P} {S} + 1 \tag {2} H2 =SH1- F+2P +1(2)

Where W1IW_1W1 and H1H_1H1 are the input width and height, FFF is the filter size,

PPP is the padding, and SSS is the stride.

C. Algorithm Flow

1. Feature Extraction with CNN: The input image is processed through the CNN layers to

extract high-level features such as edges, textures, and shapes.

2. Dimensionality Reduction with HWT: Haar Wavelet Transform is applied to reduce

feature dimensionality while retaining critical information.

3. Classification with SVM: Finally, the reduced feature set is fed into an SVM classifier to

determine whether the image is spliced or original.

This combination of CNN, HWT, and SVM ensures high accuracy while maintaining

computational efficiency.

A. Convolution Layer

The convolution layer is the foundational layer in CNN, responsible for feature extraction.

Key parameters of the convolution layer include:

« Stride: Determines how far the filter moves across the input image. Common values are

(1, 1), (2, 2),and (4, 4).

o Padding: Involves adding zeros to the borders of the input image to maintain spatial

dimensions or improve edge feature extraction.

« Filter Size: Defines the dimensions of the kernels applied to the input image.

In the proposed algorithm, six convolution layers are implemented. As depicted in Figure 3:

o Convl: Features 96 kernels of size 11x1111 \times 1111x11.

e Conv2 and Conv5: Feature 256 kernels, with sizes 5x55 \times 555 and 6x66 \times
66x6, respectively.

o Conv3 and Conv4: Feature 384 kernels, each of size 3x33 \times 33x3.

e The final convolution layer outputs feature maps of size 1x1x40961 \times 1 \times
40961x1x4096 using a kernel size of 6x66 \times 66x6, stride S=25=2S=2, and padding
P=0P=0P=0.

After each convolution layer, the Rectified Linear Unit (ReLU) activation function is

applied to introduce non-linearity. ReLU outputs 000 for negative pixel values and xxx (the

pixel value) for positive ones. Compared to traditional activation functions like tanh or
sigmoid, ReLU is computationally simpler, faster for large datasets, and improves model

convergence [8] [9] [10].

Following several ReLU layers, pooling layers are introduced to reduce feature

dimensionality and computational complexity. The two common types of pooling are:

o Max Pooling: Retains the maximum value within a pooling region, preferred for its speed

and efficiency.
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¢ Average Pooling: Computes the average value, though less commonly used.

In the proposed architecture, three max-pooling layers are employed (Figure 3), using filters

of size 3x33 \times 33x3, stride 2, and padding 0.

B. Wavelet Transforms

Wavelet transforms are used to convert an image from the spatial domain to the frequency

domain, facilitating multi-resolution analysis [10]. Among various types of wavelet

transforms, the Haar Wavelet Transform (HWT) is utilized in this algorithm due to its

simplicity, memory efficiency, and computational speed.

HWT generates a two-dimensional array comprising four sub-bands:

o LL (Low-Low): Represents low-frequency components in both rows and columns.

« HL (High-Low): Represents high-frequency components in rows and low-frequency
components in columns.

e LH (Low-High): Represents low-frequency components in rows and high-frequency
components in columns.

« HH (High-High): Represents high-frequency components in both rows and columns.

HWT reduces the feature size from 4,096 to 1,024, significantly optimizing the computational

load.

C. Principal Component Analysis (PCA)

PCA is a widely used technique for dimensionality reduction, transforming high-dimensional

data into a lower-dimensional representation while preserving essential information [20].

The four-step process of PCA includes:

1. Normalization: Standardizing the data to ensure uniformity.

2. Covariance Matrix Calculation: Measuring the relationships between variables.

3. Eigen Decomposition: Computing eigenvectors and eigenvalues from the covariance
matrix to identify principal components.

4. Transformation: Mapping the original data into a new feature space defined by the
principal components.

V. Experimental Results

To evaluate the performance of the proposed algorithm, a series of experiments were

conducted. The proposed CNN model was implemented using MATLAB R2016b with the

Caffe deep learning framework. This section is structured as follows:

« Subsection A provides a description of the datasets used.

« Subsection B outlines the evaluation metrics employed.

« Subsection C discusses the experimental results.

A. Datasets Description

Two publicly available datasets, CASIA v1.0 [21] and CASIA v2.0 [11, 12], were used to

evaluate the algorithm. These datasets are widely recognized benchmarks for spliced image

detection [12, 13].

e CASIAV1.0: Contains 1,721 images, including 800 authentic and 921 spliced images.

o CASIA v2.0: Features 12,614 images, consisting of 7,491 authentic and 5,123 spliced
images, with image formats including JPG, TIF, and BMP, and dimensions ranging from
240x160240 \times 160240x160 to 900x600900 \times 600900x600.

Dataset Image Type Image Size Authentic Spliced
CASIA v1.0 JPG 384 x 256 800 921
CASIAv2.0 JPG, TIF, BMP 240 x 160 to 900 x 600 7.491 5123

Table 1: characteristics of both datasets
Figure provides examples from the CASIA v1.0 dataset, with the first row displaying
original images and the second row showing their corresponding forged versions.
Example Images from CASIA v1.0 Dataset
B. Evaluation Metrics
Several standard evaluation metrics were used to assess the algorithm's performance,
including accuracy, recall, precision, and F-measure.
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Accuracy
Accuracy is the percentage of correctly classified images and is calculated using the
following formula [13, 14]:

1. Accuracy=TP+TNTP+TN+FP+FNx100\text {Accuracy} = \frac {\text {TP}+\text
{TN}} {\text {TP} + \text {TN} + \text {FP} + \text {FN}} \times 100
Where:

1. TP (True Positive): Number of spliced images correctly identified as tampered.
2. TN (True Negative): Number of authentic images correctly identified as original.
3. FP (False Positive): Number of authentic images incorrectly classified as
tampered.
4. FN (False Negative): Number of spliced images incorrectly classified as original.
Recall
Recall, also referred to as True Positive Rate (TPR), is the proportion of correctly
identified spliced images among all actual spliced images. It is computed as:
2. Recall=TPTP+FNx100\text {Recall} = \frac {\text {TP}} {\text {TP} + \text {FN}}
\Times 100 Recall=TP+FNTPx100
The remaining metrics, such as precision and F-measure, can be discussed in the
subsequent sections to provide a comprehensive evaluation of the proposed algorithm.
Precision
Precision, also known as the Positive Predictive Value, measures the proportion of
correctly identified spliced images among all predicted spliced images. It is computed as
follows [15]:
Precision=TPTP+FPx100\text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} \times
100 Precision=TP+FPTPx 100
Figure 5 illustrates the accuracy comparison between the proposed algorithm and other
existing methods. The proposed algorithm outperforms others, achieving an impressive
accuracy of 94.55% on the CASIA v1.0 dataset.
4. F-Measure
The F-Measure is the harmonic mean of precision and recall, providing a balanced evaluation
metric that accounts for both false positives and false negatives. It is calculated as [14, 15]:
F-Measure=2xRecallxPrecisionRecall+Precision\text{ F-Measure}=2\times frac{\text{Recall}
\times \text{Precision}}{\text{Recall} + \text{Precision}} F-
Measure=2xRecall+PrecisionRecallxPrecision
V. Comparison with Other Passive Algorithms
This section compares the performance of the proposed algorithm with several recent
methods, including:
« DWT + LBP [8]
¢ Markov Features + QDCT
o Deep Learning-Based Algorithm
e Grey Level Run Length Matrix (GLRLM)
e Markov Features
All experiments were conducted using the same datasets, CASIA v1.0 and CASIA v2.0, to
ensure consistency. The comparison considered not only accuracy but also the dimensionality
of the features extracted.
The results demonstrate that the proposed algorithm provides superior detection performance
while maintaining an efficient feature dimensionality, making it a robust solution for image
splicing detection.
Table 2. Comparison of Proposed Algorithm's Results on CASIA v1.0

Methods Accuracy Precision Recall
Mandeep et al, (2016) (8] 92.62% N/A 89.25%
Ying et al, (2016) [12) 87.51% 59,43% N/A
Sahar et al, (2013) (23) 94.19% N/A N/A
Saba et al, (2014) [24) 80.71% N/A N/A
Proposed Algorithm 94.55% 95.14% 98.99%
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The graph in Figure 5 compares the accuracy of the proposed algorithm with existing methods
on the CASIA v1.0 dataset. The results indicate that the proposed algorithm surpasses all
other methods in terms of accuracy, achieving a notable 94.55%, highlighting its

effectiveness and robustness in detecting spliced images.
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results for image splicing forgery detection algorithms on the CASIA v1.0 and CASIA

v2.0 datasets. To summarize:

o CASIA v1.0 Results: The proposed algorithm shows better performance than the one from

due to fewer hidden layers. It also outperforms the LBP-based method from [15], which is
sensitive to noise and has issues with structural patterns.
o CASIA v2.0 Results: The proposed algorithm achieves an accuracy of 94.55%, with
precision at 95.14% and recall at 98.99%. This demonstrates its strong performance in

comparison to other methods.

Table 3. Comparison of Proposed Algorithm and Other Methods on CASIA v2.0

Methods Accuracy | Precision Recall
DWT+LBP 94.09% N/A 91.87%
Markov features + QDCT 92.38% N/A N/A
Deep Learning 87% 80.65% N/A
GLRLM Texture features 87.6% N/A N/A
Markov feature 93% N/A 92.5%
Proposed Algorithm 96.36% 97.14% 99.03%

Fig. Accuracy Comparison of Proposed Algorithm with Existing Methods on CASIA v2.0

Table 4. Comparisons of Feature Vector Size

Methods Feature Vector | Accuracy
Size
Ce Li et al (2015) 1,452 92.67 %
Sahar et al. (2013) 1,920 94.19%
Matthias et al. (2010) 2,744 91.15%
Xudong et al. (2015) 14,240 93.36%
Proposed Algorithm 1,024 96.36%

he algorithm's performance was further evaluated by testing its behavior in relation to the size
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of the feature vector. This experiment provides valuable insights into the trade-off between
feature vector dimensionality and detection accuracy, as well as the computational efficiency
of the algorithm. Table 4 illustrate the comparative results of the proposed algorithm
alongside its counterparts. As seen in Table 4, the proposed algorithm utilizes a feature vector
of size 1,024, which is the smallest compared to the other four detection algorithms. The key
advantage of a smaller feature vector lies in the reduced computational cost, as fewer features
translate to less memory usage and faster processing times. Additionally, this reduction in
dimensionality can help prevent overfitting, ensuring that the model generalizes better on
unseen data [16].
For example, while other algorithms may employ feature vectors of larger sizes, often over
1,500 or even 2,000, this can lead to unnecessary complexity without a significant increase in
detection performance. On the contrary, the smaller feature size used in the proposed
algorithm maintains high accuracy while keeping the model simpler and more efficient. This
becomes particularly important when dealing with large-scale datasets or when implementing
the algorithm in resource-constrained environments, where time and memory efficiency are
crucial. The comparative results shown in Fig. further emphasize the benefits of the proposed
algorithm’s reduced feature vector size. While some competing methods may achieve
slightly better
performance in terms of accuracy, the trade-off is evident in their larger feature vectors,
leading to increased computational demands. In contrast, the proposed algorithm strikes a
balance between accuracy and efficiency, making it a practical choice for real-world
applications in image splicing forgery detection.
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Using DCT Instead of HWT

While previous experiments compared the performance of the proposed algorithm with other
existing algorithms, additional analysis was conducted to evaluate the impact of using
Discrete Cosine Transform (DCT) instead of Haar Wavelet Transform (HWT) in the feature
extraction process. To further refine the feature set, Principal Component Analysis (PCA) was
applied after DCT [16, 17].

Table 5 presents the performance metrics—accuracy, True Positive Rate (TPR), and
precision—of both the HWT-based and DCT-based algorithms. The results highlight that the
HWT-based algorithm outperforms the DCT-based algorithm in detection accuracy.
Specifically:

o For CASIA v1.0, the HWT-based algorithm achieves an accuracy of 94.55%, whereas the

DCT-based algorithm delivers slightly lower accuracy.
o For CASIA v2.0, the HWT-based algorithm demonstrates even better performance with an
accuracy of 96.36% and the highest precision among the tested methods.

The superior performance of the HWT-based algorithm can be attributed to its ability to
effectively capture both spatial and frequency domain information, ensuring robust feature
representation. In contrast, the DCT-based algorithm falls short because it primarily focuses
on frequency domain features and neglects the correlation between pixels within blocks and
between neighboring blocks. This limitation hampers its ability to detect fine-grained
splicing artifacts, especially in regions with subtle texture variations. These findings underline
the importance of selecting appropriate feature extraction techniques in forgery detection
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systems. While DCT has its advantages in certain applications, HWT proves to be more
suitable for image splicing forgery detection tasks, particularly on datasets like CASIA v1.0
and CASIA v2.0 [16, 17, 18]

Table 5. Comparison of Accuracy, Recall, and Precision: HWT-based vs. DCT-based

Algorithm
Datasets CASIA V1.0 CASIA V2.0
Proposed Algorithms | CNN+HWT | CNN+ DCT | CNN + HWT |CNN + DCT
Accuracy 94.55% 90.9% 96.36% 93.64%
Recall 95.14% 93.2% 97.14% 95.19%
Precision 98.99% 96.96% 99.03% 98%
F-Measure 97.03% 95.04% 98.08% 96.57%

V1. Conclusion

Image splicing is a common technique employed for image forgery, where a forger copies and

pastes parts of one image into another to create a tampered image. This paper presents a

robust algorithm for detecting image-splicing forgery by leveraging a deep learning-based

approach integrated with Haar Wavelet Transform (HWT). The algorithm employs

Convolutional Neural Networks (CNN) to automatically extract features from color images,

and HWT is applied to enhance the feature representation. The final feature set is used by a

Support Vector Machine (SVM) for classification. Comprehensive experiments were

conducted to evaluate the performance of the proposed algorithm on two standard tampered

image datasets: CASIA v1.0 and CASIA v2.0. The results demonstrate that the proposed
algorithm outperforms recent methods in terms of accuracy, precision, and True Positive Rate

(TPR). Notably, the proposed method achieves a high detection accuracy of 94.55% and

96.36% on CASIA v1.0 and CASIA v2.0, respectively.To further analyze the robustness of

the proposed algorithm, additional experiments were conducted by replacing HWT with

Discrete Cosine Transform (DCT) followed by Principal Component Analysis (PCA). While

the DCT-based approach achieved reasonable performance, the HWT-based algorithm

demonstrated superior accuracy and precision, highlighting its effectiveness in
capturing both spatial and frequency domain features. Moreover, the algorithm benefits from

a low-dimensional feature vector, making it computationally efficient and suitable for real-

world applications.

Future work should focus on extending the proposed approach to not only detect forgery but

also localize the regions of tampering in spliced images. This enhancement would provide

valuable insights into the nature and extent of forgeries, further advancing the
capabilities of image-splicing detection systems.
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