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This section is devoted to regular and multi-valent mapping by using differential Op,,, in the

‘U,, . We study various exciting things for this novel class prior to multivalent mappings.
Allow S exist the class of the mappings

f(2)=2"+ > az" a>0pem (1.1)
n=p+1

whichever regular & p- valent within effective ‘U,,, U ={z:|z| < 1}
Furthermore S* be effective sub ¢l prior to S containing to mappings

Y n
f(@)=2"-2 22" ;n50pem (1.2)
n=p+1
zf'(z) zf'(2)
Real {1 +£2 a}>p e 1|, (ze W) (1.3)

Wherever -la <1, >0 &peN
(ii) A mappings f(z)€ S suppose to subsist within effective cf_ UCY (a,p) to

consistently B-CV & satisfy

Reaz{1+%—a}>ﬁ Z]f,g)—1|, (zeu) (1.4)

wherevera <1, >0 andpe N
From above (1.3) & (1.4)
f(z)e 2w (a, B) do comparable toward zf (z) € S,(a, B) (1.5)

Hd,,, of f(z) ,9(z)€ S can be define as

f*g(z)=z"+ i ab, z"

1.6
k=p+1 (Zeu),pEN ( )
Concerning effective mapping f(z)€ S ,without help classify affecting subsequent
: 1+p
I°f@) = f@, I'f@) = zf )+~
along withk=234,........
=2°+ > nk)a,z", pen (1.7)

n=p+1
Somewhere I* is the same as diff. Op,,, , Ghanim & Darus [ 2], S.K.Lee,
S. Khairnar with S. Rajas [ 9 ] have studied this Op,, widely.
Let S*(a, ) €S consisting of the mapping of the form (1.1) and satisfy
2(1*F(2)) - p
1“f (z) 3
- TS H 1.8
p(1t (1) (1 (2)) 9
— APl
1“1 (z) 1“f (z)
where-1<a < f<land0<p<1(zeu),

Also let S™(0,p) =S"(a, ) N S*
3.2.1Coefficient Estimate
Here we obtained a essential & enough situation for function f(z) inside effective c(

S*(a, B)andS™*(a,p).

(i I1E2N
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Theorem 1: A mapping of the equation (1.1) is in S*(a, B) iff

0

>.[(n=p)+un(B-ap) (k)| < up(B-ap), (1.9)

n=1
where-1< a < f <1land0< u < 1andpe N.
Troof : It’s enough to illustrate so as to

z(lkf(z))'—p

1 (2) 3
p(t@) (1) g
1“f (2) 1“f (2)
asf(2)e S*(a, B) V\(e have
z(1%f (2)) - p

1f (2) <u(zeu)pe

p2(1°1 (2)) (11 (2)) Su(zeu)pen

Kf(z) PP ()

pz® + i n(k)na,z"
n=p+1
» —Pp
z*+ > n(k)a,z"
— . n=p+1 - S/,l
ppz’+ B n(kna,z" pz® + > n(k)na,z"
n=p+1 n=p+l
z?+ > n(k)a,z" z®+ > n(k)a,z"
n=p+1 n=p+1
pzP+ > n(k)na,z" - pz° - > n(k)a,z"
_ n=p+1 n=p+1 <
- - <u
pz° (B-ap)+ D (B-ap)n(kna,z"
n=p+1

> 1= p) + (B - apdln(o)lay] < w8 - ap)
n=p+1

Theorem 2: A essential and enough stipulation in favor of f(z) prior to the structure (1.2)
toward exist effective ¢l S*™*(a,B).

Ln=p+1l(n —p) + un(B — ap)In(k)|a,| < up(B — ap) (1.10)
where-1<a < fand0<u <1&PpeEN.

’Proof : It’s enough to illustrate so as to
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A% ) -»
1*f(2)

; | <
k k
ﬁz(llc f@) ap Z(ka(Z))
1%f(2) 1%f(2)
We enclose
pz°+ > n(k)na,z"
ni£+l _ p
2’ + > n(k)a,z"
— n=p+1 . S,Ll
Bpz®+ B> n(k)na,z" pz®+ > n(k)na,z"
n=p+1 n=p+1
2’ + > n(k)a,z" 2P+ > n(k)a,z"
n=p+1 n=p+1

[(n —p) + un(B — ap)In(k)|a,||z"| < up(B — ap) |z"|

gk

> s

llowing the value of z— — 1 with effective Re, Ax, , without help acquire

1s !

[(n —p) + un(B — ap)In(k)|a,| < up(B — ap)

NgE

n=p+1
The $**(a,B) remain closed underneath linear combination we will prove this in the following
theorem.

Theorem 3: If f(z) is definite through (1.2) and

g(z)=2z"— i b,z"

n=p+1
live in the class S™*(a,p).Then the function

h(z)=(1-0) f(z)+o9(2)=2"- D n,2"
n=p+1 (1.11)
Is as well within S**(a,B) wherever
N, =1 —¢€)a, +€b, 0<e<1.
’.Proof . As the mappings f(z) & g(z) hold inside $**(a.,B), so we include

o]

D [ =p) + (B — ap)n(ilay| < pp (8 = ap)
n=p+1

And

D" 1= p) + un(B = ap)In()lbal < up(F = ap)
n=p+1

Then
h(2) =1 —-e)f(2) + eg(2)

=(1-0)z- i anz”+d£z— i bnz”j

n=p+1 n=p+1

LS [(1—6)a, +ob, |z°

n=p+1
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=z"- > ¢

n=p+1
when ¢, = (1 — €)a, + €b,
Now consider

o]

> 10 =p) + un(g - ap)n(ilcal

n=p+1
0

= ) (=) + un(B — ap)In()| (1 - a + b,

n=p+1

16 3 [(n=p)+un(B-ap)]n(K)la,|

n=p+1

<A-eup(B —ap) + eup(B — ap)
=up(f — ap)
Thus we get

D" 0= p) + (B — ap)n()lan] < pp (8 — ap)

n=p+1
Hence h(z)e S** (o)
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