International Advance Journal of Engineering, Science and Management (IAJESM)
[SSN -2393-8048, January-June 2021, Submitted in March 2021, iajesm2014@gmail.com

Study on the Parameters Related to Simulator for software
maintainability

Kavita Vijaysingh Tiwari, Research Scholar, Department of Computer Science, Monad University, Hapur, Uttar Pradesh
(India)
Dr. Kailash Kumar Assistant Professor, Department of Computer Science, Monad University, Hapur, Uttar Pradesh (India)

Abstract:

Using this analysis one can generate a new sequence of random but related states which
look similar to the original. This Markov process is stochastic in nature which has the
property that the probability of transition from a given state to any future state depends only
on the present state and not on the manner in which it was reached. The simulator is
developed in this chapter to compute n-step e steady state stationary transition probabilities
for various state of the software under maintenance. The one step transition probabilities for
five initial states of deterioration of the software under maintenance. The transition
probabilities are chosen according to Markovian property i.e. the sum of the probabilities of
going from one state to all other state is one. The operating efficiency of the software is
supposed to be 0.95, 0.87, 0.79, 0.75 and 0.70. The steady state transition probabilities for
each state denoted by 0,1,2,3 and 4 are shown. This simulator is executed for a maximum
value of n=100 or till the system reaches a steady state while calculating n-step probabilities
successively.

Keywords: Software, Simulators, Quality, Maintance

Introduction: Software is developed, maintained, and used by people in a wide variety of
situations. Students create software in their classes, enthusiasts become members of open-
source development teams, and professionals develop software for diverse business fields
from finance to aerospace. All these individual groups will have to address quality
problems that arise in the software they are working with. This chapter will provide
definitions for terminology and discuss the source of software errors and the choice of
different software engineering practices depending on an organization’s sector of business.
Every profession has a body of knowledge made up of generally accepted principles. In
order to obtain more specific knowledge about a profession, one must either: (a) have
completed a recognized curriculum or (b) have experience in the domain. For most
software engineers, software quality knowledge and expertise is acquired in a hands-on
fashion in various organizations. The Guide to the Software Engineering Body of
Knowledge constitutes the first international consensus developed on the fundamental
knowledge required by all software engineers.

According to IEEE Standard Glossary of Software Engineering Terminology,
maintainability is the ease with which a software system or component can be modified to
correct faults, improve performance or other attributes, or adapt to a changed environment
[IEE1990]. Maintainability can also be defined as the probability that a specified
maintenance action on a specified item can be successfully performed (putting the item into a
specified state) within a specified time interval by personnel of specified characteristics using
specified tools and procedures [JAR1990].

Software under maintenance consists of finite number of states. The states have a
specific operating efficiency. The maintenance process can bring the software from one state
to another within a specific time slot allotted to the software maintenance engineers. The
software fails or reaches its maximum efficiency depends upon the nature of maintenance
problems. Here an attempt has been made to develop a simulator to compute n—step transition
probabilities successfully for software under maintenance until it reaches steady state. This
process is very much depicted by Markov analysis [GIL2004].

The purpose of software maintenance is to assure the quality of performance of the
respective software. But design errors, undiscovered faults and installing new applications
can cause the software degradation [RIK1999]. There are two aspects of maintainability:
serviceability (the probability of returning the item to normal service) and repair ability (the
probability of repairing the actual or impending fault). Generally, software maintainability is
termed as repair ability. In software engineering, the main emphasis of maintenance is change

M Volume-15, Issue-lI -

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
[SSN -2393-8048, January-June 2021, Submitted in March 2021, iajesm2014@gmail.com
or the modification of a software product after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a modified environment.

Rajiv D. et al. [RAJ1994] estimated the impact of development activities in a more
practical time frame. They developed a two-stage model in which software complexity is a
key intermediate variable that links design and development decisions to their downstream
effects on software maintenance. They analyzed the data collected from various software
enhancement projects and software applications in a large IBM COBOL environment.
Results indicated that the use of a code generator in development is associated with increased
software complexity and software enhancement project effort. The use of packaged software
is associated with decreased software complexity and software enhancement effort. Pfleeger
[PFL1998] describes maintainability as the probability that a maintenance activity can be
carried out within a stated time interval, it ranges from 0 to Rikard Land [RIK1999]
investigates how the maintainability of a piece of software changes as time passes and it is
being maintained by performing measurements on industrial systems. Niessink F. [NIE2001]
discussed the perspectives of improving software maintenance and described software
maintenance process improvement from two perspectives: measurement-based improvement
and maturity-based improvement.

Y. Kataoka et al. [YKA2002] discussed program refactoring as a technique to
enhance the maintainability of a program. A quantitative method was proposed to measure
the maintainability enhancement effect of program refactoring. Coupling metrics were used
to evaluate the refactoring effect. By comparing the coupling before and after the refactoring,
the degree of maintainability enhancement was evaluated. The results showed that the
method was really effective to quantify the refactoring effect. The software to be maintained
may be considered to be in a number of states of deterioration. The maintenance (repair)
work of the software is inspected after a regular interval of time, say, weekly and is classified
as being in one of the states. Each state is considered as functionally independent. The
evaluation is carried out using Markov analysis which looks at a sequence of states and
analyses the tendency of one state to be followed by another, after each repair the software
restored to a state having ‘increased’ operating efficiency. Using this analysis one can
generate a new sequence of random but related states which look similar to the original. This
Markov process is stochastic in nature which has the property that the probability of
transition from a given state to any future state depends only on the present state and not on
the manner in which it was reached.

If to<til<ta<........ < tn represents the points in time scale then the family of random
variables {X(tn)} is said to be a Markov process provided it holds the Markovian property :
P{X (tn) = Xn|x (tn—l) =Xn-1, X (tO) = XO} = P{ X (tn) = an X(tn—l) = Xn—l}
Vo X (to), X (t1),e...,X(tn)

Markov process is a sequence of ‘n’ experiments in which each experiments has ‘n’ possible
outcomes Xi, Xa,...... ,xn. Each individual outcome is called a state and probability (that a
particular outcome occurs) depends only on the probability of the outcome of the preceding
experiment. The simplest of the Markov processes is discrete and constant over time. It is
used when the sequence of experiment is completely described in terms of its states (possible
outcomes). There is a finite set of states numbered 0, 1, 2, 3,n and this process can be
only in one state at a prescribed time. The system is said to be discrete in time if it is
examined at regular intervals.
The probability of moving from one state to another or remaining in the same state during a
single time period is called transition probability.

P Xn-1, Xn=P{ X(tn)= Xn | X(tn-1)= Xn-1}
Mathematically, the probability is called the transition probability. This represents the
conditional probability of the system which is now in state xn at time t, provided that it was
previously in state xn.1 at time t,.1. This probability is known as transition probability
because it describes the system during the time interval (tn-1, tn). Since each time a new result
or outcome occurs, the process is said to have stepped or incremented one step. Each step
represents a time period or any other condition which would result in another possible

M Volume-15, Issue-lI 269

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, January-June 2021, Submitted in March 2021, 1ajesm2014(@gmail.com
outcome. The symbol n is used to indicate the number of steps or increments.
The transition probability can be arranged in a square matrix form denoted by P with
elements pij
Such that Y pij=1;i=0, 1, 2, 3.....nand 0<pij<1
J=0
n-step stationary transition probabilities
The n-step stationary transition probabilities are defined to be
PrsM=P(Xin=s|Xi=r) = P(Xn=5[Xo=T)
prs™M>0 for all states r and s; n=1,2,....
n
Y prs™=1 for all states r; n=1,2,....
s=0
The above equation assumes that there are N+ 1 possible states. Note that if the system is
currently in state r, it must be in some state n steps from now.

Thus n

Z prs(n) =1

s=0
In general, the n-step stationary transition probabilities can be calculated as follows:

n
prs™ =¥ prj+ pjs™D
j=0

Where the possible states are 1, 2, , n. That is, the probability of going from state r to
state s in n steps is the probability of going from state r to state j in one step, times the
probability of going from state j to state s in n-1 steps, summed over all j=0, 1, 2,...... , .

Steady state stationary transition probabilities
Suppose a given system has N+ 1 states, 0, 1, 2... N. if for some value of n
prs™ > 0 for r=0,1,2,...... ,N
s=0,1,2,....... , N

and if

prr > 0 for r=0,1,2,.....N
then

lim prs(n) =as fors=0,1,2,.....,N
n—o0

The quantity as is the steady state stationary transition probability of being in state s after a
large number of steps. That is to say, if every state can eventually be reached from every
other state (possibly in a large number of steps), and if the system can be in any given state
on two consecutive steps, then the probability of being in any given state after a large number
of steps is a constant. This constant is called the steady state probability for the given state.

The N+1 steady state probabilities satisfy the N+2 linear steady state equations N

as=) arprs for s=0, 1, 2,....., N
r=0

N

z as=1

s=0
Thus, if one forms a system of N+1 linear equations in N+ 1 unknown using above
equation, the solution of the system will be the N+1 steady state probabilities.
PROPOSED MODEL
The proposed model assumes that ‘maintainability’ of the software means a quantitative
characteristic called ‘operating efficiency’ , which from user point of view is maximum in
the beginning and deteriorates progressively with the passage of time in view of ever
increasing user expectations that evolve constantly over time.

M Volume-15, Issue-lI o

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
[SSN -2393-8048, January-June 2021, Submitted in March 2021, iajesm2014@gmail.com
Software under consideration for maintenance must be in one and only one state of
deterioration at specific point of time. The software that is currently in state ‘r’ must be in
some state ‘n’ steps from now. Under fairly general conditions, if the one-step stationary
transition probabilities are available, one can determine n-step stationary transition

probabilities until the software reaches steady state.

The simulator developed in this chapter computes the n-step probabilities successively until
the system reaches steady state or until n = 100, which ever occurs first. If steady state is not
reached, a message stating such is printed. The simulator is developed using high level
programming language.

Assumptions

e The software to be maintained may be considered in one of the five states of
deterioration. Say Xi = {0, 1, 2, 3, 4} represents the state of deterioration of the
software at the end of i" week.

e The operating efficiency is simulated for each state using Bux Muller transformation.
e.g. 95% to 100% for the state=0 and below 70% for state =4 and in-between for other
states.

e The one-step stationary transition probabilities may be given or may be determined
from the past data.

e n-step transition probabilities are calculated successively until the system reaches
steady-state or n = 100 which ever occurs first.

¢ In the absence of a steady-state a message stating such is printed.

DESCRIPTION OF ALGORITHM: SIM_SOFT_MAINT
Terms and Notations
N : Number of n-step probabilities.
NS : Number of states of deterioration for the
software to be maintained.
PROB (X0=I) : Probability of being in state | initially (operating

efficiency)
P(,J) : One step stationary transition probability
PN (1, J) . n steps stationary transition probability

MAT (1, J) : Probabilities of being in state J after | steps.
Algorithm SIM_SOFT_MAINT for n-step probabilities using
Markov Analysis
1. [INPUT]
(@) [Number of states for software maintenance]
Read NS
(b) [Probabilities of being in state | initially]
[Compute the probabilities (operating efficiency) of each state of deterioration initially
operating efficiency using Box-Muller transformation by (with the help of random numbers
generation), computing of their mean and standard deviation and normalizing the function
These probabilities are denoted by PROB(1)), 1=1 to NS] or
For I=1to NS
Read PROB (I)
End For
(c) [One step stationary transition probabilities]
For 1I=1to NS
ForJ=1to NS
Read P (I, J)
End for
End for
2. [Calculate n step stationary transition
probabilities for N=1,2,3,]
For R=1 to NS
ForS=1to NS

M Volume-15, Issue-lI "

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
[SSN -2393-8048, January-June 2021, Submitted in March 2021, iajesm2014@gmail.com
PN[R, S)=0
ForJ=1to NP
PN (R, S)=PN (R,S)+P(R,J)*P (J,S)
End for
End for
End for
3. [Compute steady state transition probability]
For J=1to NS
TEMP(J)=0
For 1I=1 to NS
TEMP (J)=TEMP(J)+PROB(I1)*PN (1,J)
End for
End for

4. [Write probabilities of being in state j after i steps
in the form of matrix MAT using TEMP (J)]
5. [write results]
For 1=1 toNS
ForJ=1to NS
Write MAT(1,J)
End for
End for
6. Stop
RESULTS & DISCUSSION
The simulator is developed in this chapter to compute n-step e steady state stationary
transition probabilities for various state of the software under maintenance. The one step
transition probabilities for five initial states of deterioration of the software under
maintenance have been shown in table 1. The transition probabilities are chosen according to
Markovian property i.e. the sum of the probabilities of going from one state to all other state
is one.
The operating efficiency of the software is supposed to be 0.95, 0.87, 0.79, 0.75 and 0.70.
The steady state transition probabilities for each state denoted by 0,1,2,3 and 4 are shown in
the table 2 in the form of results.
This simulator is executed for a maximum value of n=100 or till the system reaches a steady
state while calculating n-step probabilities successively.

TABLE 1: Transition Probabilities Matrix

To State & From State 0 1 2 3 4
0 055| 040 | 003 [0.02| O
1 0 0.50 | 0.46 |0.03|0.01
2 0 0 0.44 | 0.50 | 0.06
3 0 0 0 0.68 | 0.32
4 0 1.0 0 0 0

TABLE 2: Steady State Transition Probabilities

State | Steady state stationary Transition Probabilities
0 0
1 0.3173
2 0.2308
3 0.3123
4 0.1396

CONCLUSION:
A gradual eye on upkeeps of the software would reveal that with the passage of time the ‘operating

M Volume-15, Issue-lI "

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)

[SSN -2393-8048, January-June 2021, Submitted in March 2021, iajesm2014@gmail.com
efficiency’ decreases and the level of maintainability effort increase. The initial state of software’s
operating efficiency proceeds to a state after passing through ‘n’ steps where the operating efficiency
noose dives to the lowest level referring to as ‘steady state’ after which there will conceptually be no
retardation of software efficiency any further and the concerned software may be branded as ‘unfit for
use’ i.e. no further maintainability is desirable and no effort should be made to modify the software. This
is achieved after a large number of steps and as such the transition probabilities remain fairly constant
for each state as shown in the table 16. This state is the terminal stage where the user has to adapt the
strategy of either invests in new alternate software or goes for an improved version of the same. The
software simulation tool designed here will be helpful for the software project managers in judging the
maintenance efforts of the software.

Though it is difficult to quantify the actual maintenance efforts at different point of time of
our choice, but its impact is fairly realized over the software life cycle. A precise measure of
software maintainability can help better manage the maintenance phase effort.

Reference:
Aannestad, B., Hooper, J., “The Future of Groupware in the Interactive Workplace”,
HRMagazine, Vol. 12, Issue 11, November 1997, pp. 37-41.

Abdrabou A, Zhuang W (2006) A position-based QoS routing scheme for UWB mobile ad

hoc networks. IEEE J. Select. Areas Commun. 24:850-856.

Agarwal, H., Demillo, R. A. and Spafford, E.H. Debugging with Dynamic Slicing and
Backtracking, Software Practice and Experience, 23, pp. 589-616, 1993.

Campos, J., Arcuri, A., Fraser, G. and Abreu, R. Continuous Test Generation: Enhancing
Continuous Integration with Automated Test Generation, In the Proceedings of

Automated Software Engineering (ASE), 2014.
Camuffo, M., Maiocchi, M. & Morselli, M., 1990. Automatic software test generation.
Inform. Softw. Technol., pp. 337-346. Carnes, P., 1997. Software reliability in weapon
systems. , Proceedings of 8th International Symposium On Software Reliability Engineering,
p. 114-115.
Canfora, G., Cimitile, A. and De Lucia, A. Conditioned Program Slicing. Information and
Software Technology, 40(11), pp. 595-607, 1998.

Cao, Y., Hu, C. and Li, L. An Approach to Generate Software Test Data for a Specific Path

Automatically with ~ Genetic Algorithm, In the Proceedings of ICRMS, Chengdu, pp. 888-
892, 2009.

Dufner, D., Kwon, O., Hadidi, R., “WEB-CCAT: A Collaborative Learning Environment For
Geographically Distributed Information Technology Students and Working
Professionals”, Communications of the Association for Information Systems, Vol. 1,
Article 12, March 1999, Available [Online]: http://cais.isworld.org/articles/1-
12/article.htm [26 November 2000].

Edvardsson, J and Kamkar, M. Analysis of the Constraint Solver in UNA Based Test Data
Generation, In the Proceedings of the 9th European software engineering conference held
jointly with 9th ACM SIGSOFT international symposium on Foundations of software

engineering, 26(5), pp. 237-245, 2003.

Ehrlich, W. K., Lee, K. & Molisani, R. H., 1990. Applying reliability measurement: A case

Study. IEEE Transaction on Software, p. 56-64..

Udell, J., Asthagiri, N., Tuvell, W., Peer-To-Peer: Harnessing the Power of Disruptive
Technologies, O’Reill & Associates, 2001.

UNCTAD,World Economy Report(2012)The Software Industry and Developing Country PP-

38- 42 Review of Literature - 11 Economic Analysis of Changing Dimensions of IT

Sector in India Page 74.

Upadhya, Carol (2007). ,,Employment, Exclusion & ,,Merit” in the Indian IT Industry®,
Economic & Political Weekly, A Sameeksha Trust Publication

alsoseehttp://www.epw.org.in ,VolIXLI No.36 September9- 15,2006 PP-1863- 1867.

Vaishnav, Rajiv (2011).” Indian Industry2011: Key Driver of growth®, The Hindu Survey of
Indian Industry, REGD, RN/5734|61 pp.190-192.

M Volume-15, Issue-lI "

mailto:iajesm2014@gmail.com
http://cais.isworld.org/articles/1-12/article.htm
http://cais.isworld.org/articles/1-12/article.htm

International Advance Journal of Engineering, Science and Management (IAJESM)
[SSN -2393-8048, January-June 2021, Submitted in March 2021, iajesm2014@gmail.com
Varma, Shweeta (2012). ,Looking for that Sunshine“, Dataquest, Vol.xxxNo.l6 &

17August31- Septemberl5, 2012, PP- 104-108.

Vivek V, Sandeep T, Manoj B S, Murthy C S R (2004) A novel out-of-band signaling
mechanism for enhanced real time support in tactical ad hoc wireless networks. Proc.
IEEE RTAS 56-63.

Wallace, D. & Coleman, C., 2001. Application and Improvement of Software Reliability

Models, NASA, Goddard Space Flight Centre(GSFC): Technical Report,Software

Assurance Technology Center.

Wang M, Kuo G S (2005) An application-aware QoS routing scheme with improved stability

for multimedia applications in mobile ad hoc networks. Proc. IEEE Vehicular

Technology Conf. 1901-1905.

Wang, Z. & Wang, J., 2005. Parameter estimation of some NHPP software reliability models

with changepoint. Communications in Statistics: Simulation and Computation, Volume

34, p. 121-134..

Wang, Z., Wang, J. & Liang, X., 2007. Non-parametric Estimation for NHPP Software

Reliability Models. Journal of Applied Statistics, pp. 107-119.

Whittaker, J. A., 2000. What is software testing? And why is it so hard?. Software, pp. 70-79.

Wood, A., 1996. Predicting software reliability. IEEE Computer, Volume 11, pp. 69 -

7.

Wilson, J., Hoskin, N., Nosek, J., “The Benefits of Collaboration for Student Programmers”,
24" SIGCSE technical symposium on Computer Science Education, February 1993, pp.
160-164.

M Volume-15, Issue-lI a

mailto:iajesm2014@gmail.com

