International Advance Journal of Engineering, Science and Management (IAJESM)
[SSN -2393-8048, January-June 2021, Submitted in June 2021, iajesm2014@gmail.com

Study on Website Performance Measurement

Anju, Research Scholar, Department of Computer Science, Monad University, Hapur, Uttar Pradesh (India)
anjupanwar2793@gmail.com

Abstract
Websites are essentially client/server applications - with web servers and browser clients.
Consideration should be given to the interactions between html pages, TCP/IP
communications, internet connections, firewalls, applications that run in web pages (such as
applets, JavaScript, plug-in applications) and applications that run on the server side (such
as CGI scripts, database interfaces, logging applications, dynamic page generators, asp,
etc.). Additionally, there are a wide variety of servers and browsers, various versions of each,
but sometimes significant differences between them, variations in connection speeds, rapidly
changing technologies, and multiple standards and protocols. The end result is that testing
for web sites has become a major ongoing effort [M1C2008]. It is an accepted fact that no
system is perfect from view point of performance. Problems pertaining to performance affect
all type of systems regardless whether they are client /server architecture or web application
systems. The technical factors are the major constraints affecting the performance of the
web-based systems. Performance testing of software in general seeks to identify possible
bottlenecks and their causes, in addition to optimizing and tuning the platform configuration.
It is a testing discipline aimed at verifying an application’s ability to operate normally under
expected load levels as well as peak load conditions. Determining how well a system scales to
enable increased capacity is also an issue. Microsoft Corporation claims that performance
testing is about assessing how a system responds to a specified set of conditions and input,
and that multiple individual performance test scenarios are required to cover all relevant
conditions and input.
Introduction
Websites impose entirely new challenges in the world of software quality. Within minutes of
going live, a web application can have many thousands more users than a conventional, non-
web application. The immediacy of the web creates immediate expectations of quality and
rapid application delivery, but the technical complexities of a website and changes in the
browser make testing and quality control much more difficult, and in some ways, more
subtle, than "conventional” client/server application testing.
Websites and its functionality is the main show window for potential customers for
companies running e-business or e-commerce. Consequences of poor quality in a web context
might be even bigger and therefore, testing plays an important role for good quality web
applications. In such systems the quality attributes like robustness, reliability and
performance become important properties. A customer surfing the website with a certain goal
in mind does not tolerate lack in performance or unacceptable reliability, because there is
likely to be a multitude of other companies offering similar services just a mouse-click away.
This highlights the importance of making web-based systems to be reliable and perform
satisfactory [M1C2008].
To assure website quality, software testing tools and techniques are developed as per the
nature of websites and web applications. Automated testing of websites is an opportunity and
a challenge. There are a number of automated testing tools available in the market. In this
paper an attempt has been made to measure the performance of a website using an automatic
web testing software. Two test cases are discussed on various technical grounds to measure
the performance.
Performance testing provides with plenty of answers regarding the web based software/
websites to be tested, with the most significant ones are listed below
e Response time
Throughput
The maximum amount of concurrent users supported
Resource utilization with respect to CPU, RAM, network/ disk 1/0
Behavior under various workload patterns
General application weaknesses

< M= Volume-15, Issue-111 38

mailto:iajesm2014@gmail.com
mailto:anjupanwar2793@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)

[SSN -2393-8048, January-June 2021, Submitted in June 2021, iajesm2014@gmail.com
. System breaking point — the point where the application stops responding to requests
Response time, also referred to as latency, is the time elapsed until a request has been
processed. Response times can be measured on both server and client, where the latter
includes the request queue, network latency, as well as the time required by the server to
complete request execution. Throughput defines the number of requests that the web system
is capable of serving per unit time. Requests per second are the most common measure of
unit as far as throughput is concerned. Resource utilization with respect to CPU, RAM, disk
1/0 and network 1/O, represents a cost in system operation. Resource cost can be computed
per operation, and is usually measured for a certain user load or distributed on the basis of a
workload profile. A workload profile consists of a likely user composition where the users
perform various system operations. Simulating simultaneous users can be done by making
sure the test scripts incorporate so-called think time. Think time represents the time a user
spends between two consecutive requests, for instance when reading web page information or
filling out a form. The purpose of think time is to ensure that not all user requests being
simulated will occur at the same time. Removing think time from the test script makes sense
if the goal is to stress test the web application by simulating concurrent users.
Performance of software is related to its efficiency. According to 1SO 9126 efficiency is one
of the attributes of software quality. Efficiency has two main aspects viz. time behavior and
resource behavior. Time behavior deals with attributes of software that bear on the response
and processing times and on throughput rates in performing its function whereas resource
behavior deals with attributes of software that bear on the amount of resources used and the
duration of such use in performing its function. Thus one finds it logical to map performance
to software quality attribute efficiency.

CASE STUDY
A website under study has a URL containing number of links that are required on the home
page and the size of the page. le. http://perftestdomainl/cgi-

bin/genAllTypeRandomLinks.pl?links=10andfilesize=10andrandom=0

links => no of links that are required on the page

file size => size of the page showing the links

random => It is simply used to avoid URL History rejection of duplicate links placed over
Apache and accessible by 25 different domain names logging for the entire site is enabled
with bytes sent.

Other details regarding inputs, setup and controlled sets are described with the test cases.
Terms and Notations:

RP : Request Processor M1 : Test Machine 1
CP : Client process M2 : Test Machine 2
CU : Crawler/Crawler Unit I1 :Input Type 1 as described in Inputs
dS :RP+CP+CU 12 . Input Type 2 as described in Inputs
FS : File Repository of dS WS : SQL Server
dSDB : D Server Database M1SS : SQL Server on Machine 1
MIDB : MI Database M2SS : SQL Server on Machine 2
DB : Data base
TEST I
Inputs:

(@) Local Test Bed: It consists of a combination of hardware and software considered for
the testing of website. Our input consists of a URL containing number of links that are
required on the home page and the size of the page showing the links. A perl script was
created which takes the input in URL.

(b) Controlled Set: The homepage consists of a fix number of hyperlinks say, 25 of the
same type say, news having only one further hyperlink. These pages could be divided
randomly being pdf, doc, html, xIs or ppt types. And other hyperlinks say, 30 having no
further links. Entire database server is on one machine. System performance is logged
in terms of CPU and Memory and Individual Apps CPU, Memory, Page/Faults Apache
Web server Logs for requests, status, url and bytes used.

¥ IAJESM
2

Volume-15, Issue-IlI 39

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, January-June 2021, Submitted in June 2021, iajesm2014@gmail.com
(c) Setup Details: Two machines were used for this test. Machine 1 called database server

having configuration CPU : 2.4 GHz, Memory : 1 GB, OS : Windows 2000 Server +
Service Pack 4, Database(DB) : SQL Server 2000 (Enterprise) and Machine 2 : Web
Server having configuration CPU : 2.4 GHz, Memory : 1 GB, OS : Windows 2000

Server + Service Pack 4, DB , 20 GBx2 HDD. Apache was running on this machine.

(d) A software which brings the information as per the requirement of the customer is
configured by specifying the politeness interval =1 and queue in memory =1501 and
logging level is taken to be one to avoid too many page faults.

Outputs:

The various factors relating to performance of website at different timeslots at peak durations

and non peak durations obtained after testing are shown as version 1 and version 2 in table

5.1. It is observed that the values performance parameters are on higher side in version 2.

TABLE 1.1: Output of Test |

Performance parameters Version 1 Version 2
Clock Time in seconds 4741 4801
No of pages downloaded in Clock Time 1964 2969
Total Requests Processed 1964 2966
Total Bytes sent by web server 198858771 | 300361612
Rate of download = Downloaded Pages/Time Taken 0.414 0.617
Bytes/Second = Total Bytes/Clock Time 41944.48 62562.30
Average CPU Usage (CrawlerUnit) 7.48 2.29
Average Memory Usage (CrawlerUnit) 18.77 MB | 16.30 MB
Average Virtual Memory Usage (CrawlerUnit 98.04 MB | 101.90 MB

The following graph shows the comparison of performance of website at peak duration and
non-peak durations as version 1 and version 2.

Comparison of Outputs of Test 1

350000000
300000000]
250000000 A
200000000 -
150000000 -
100000000 A
50000000 A
o+

)
version 1 i ,
version 2

FIGURE 1.1: Comparison of Outputs of test 1
Case 1 Explaination:
Crawler had enough work to do as Master List always had enough entries of different
domains. Though the Politeness Interval=10; Average politeness interval per domain,
observed in web server log was 34 seconds.
CONCLUSION
Automated web testing ensures that the web applications/web sites/web services’ usual
functionality works correctly. It provides the ability to reuse and extend the tests across
multiple browsers/ platforms/languages/databases/servers and ensure that all the users
accessing the web applications get results in an acceptable time. This helps to cut costs,

s IAJESM
2

Volume-15, Issue-IlI 40

mailto:iajesm2014@gmail.com
http://supercell.usa.firstrain.com/twiki/bin/edit/Main/CrawlerUnit?topicparent=Main.DServerPerformanceTesting

International Advance Journal of Engineering, Science and Management (IAJESM)
[SSN -2393-8048, January-June 2021, Submitted in June 2021, iajesm2014@gmail.com
minimize the effort required to test web applications/web sites, increase software quality,
reduce time-to-market and use reusable test cases.

Reference:
e Aannestad, B., Hooper, J., “The Future of Groupware in the Interactive
Workplace”, HRMagazine, Vol. 12, Issue 11, November 1997, pp. 37-41.

1

IAJESM

Abdrabou A, Zhuang W (2006) A position-based QoS routing scheme for UWB
mobile ad hoc networks. IEEE J. Select. Areas Commun. 24:850-856.

Agarwal, H., Demillo, R. A. and Spafford, E.H. Debugging with Dynamic Slicing
and Backtracking, Software Practice and Experience, 23, pp. 589-616, 1993.
Campos, J., Arcuri, A., Fraser, G. and Abreu, R. Continuous Test Generation:
Enhancing Continuous Integration with Automated Test Generation, In the
Proceedings of Automated Software Engineering (ASE), 2014.

Camuffo, M., Maiocchi, M. & Morselli, M., 1990. Automatic software test
generation. Inform. Softw. Technol., pp. 337-346.

Carnes, P., 1997. Software reliability in weapon systems, Proceedings of 8th
International Symposium On Software Reliability Engineering, p. 114-115.
Canfora, G., Cimitile, A. and De Lucia, A. Conditioned Program Slicing.
Information and Software Technology, 40(11), pp. 595-607, 1998.

Cao, Y., Hu, C. and Li, L. An Approach to Generate Software Test Data for a
Specific Path Automatically with ~ Genetic Algorithm, In the Proceedings of
ICRMS, Chengdu, pp. 888- 892, 2009.

Dufner, D., Kwon, O., Hadidi, R., “WEB-CCAT: A Collaborative Learning
Environment For Geographically Distributed Information Technology Students
and Working Professionals”, Communications of the Association for
Information Systems, Vol. 1, Article 12, March 1999.

Edvardsson, J and Kamkar, M. Analysis of the Constraint Solver in UNA Based
Test Data Generation, In the Proceedings of the 9th European software
engineering conference held jointly with 9th ACM SIGSOFT international
symposium on Foundations of software engineering, 26(5), pp. 237-245, 2003.
Ehrlich, W. K., Lee, K. & Molisani, R. H., 1990. Applying reliability
measurement: A case Study. IEEE Transaction on Software, p. 56-64..

Volume-15, Issue-IlI 41

mailto:iajesm2014@gmail.com

