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ABSTRACT
Fractional calculus, the study of integrals and derivatives of arbitrary orders, has evolved
from a mathematical curiosity to a robust framework with diverse applications in various
scientific and engineering fields. This paper delves into the historical milestones, key
contributors, fundamental theories, and modern applications of fractional calculus, providing
a detailed account of its development and significance.
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1. INTRODUCTION

Fractional calculus is an extension of traditional calculus that involves derivatives and
integrals of non-integer orders. The concept, which dates back over 300 years, has evolved
significantly, impacting various areas such as control theory, viscoelasticity, and anomalous
diffusion. In recent decades, fractional calculus has grown in popularity and use in fields as
diverse as pure mathematics and science. However, fractional calculus has been around for a
while. As far back as classical calculus is concerned, fractional calculus may be traced almost
as far back as it is now. Students of modern fractional calculus would be mistaken to think
that the course is just "calculus of fractions,” despite the misleading name. Using an arbitrary
sequence of integration and differentiation would improve the current practice of fractional
calculus. To better understand the phrase "fractional calculus” and its misleading use in
modern times, it is helpful to trace its origins. So, this article begins with a brief overview of
the history of fractional calculus. A number of books and articles published in the last several
years have dealt with fractional calculus and its history. Also, Ross has covered many aspects
of the development of fractional calculus in his many writings. This chapter presents three
parts of historical reflection, each of which shows a distinct stage in the development of
fractional calculus. The purpose of this chapter is to offer a general outline of the
development of fractional calculus rather than a detailed account of its origins and
progression. This paper traces the historical trajectory of fractional calculus, highlighting its
theoretical advancements and practical applications.

2. LITERATURE REVIEWS

The history of fractional calculus can be traced back to 1695 when Gottfried Wilhelm Leibniz
and Guillaume 'de I'H6pital corresponded about the possibility of derivatives of non-integer
orders. Leibniz's curiosity about the derivative of order 1/2 and L'Hdpital's intrigued response
marked the first recorded instance of fractional calculus. This initial exploration laid the
conceptual groundwork for future developments in the field.

In 1822, Joseph Fourier?, renowned for his work in heat transfer, briefly referenced fractional
differentiation in his seminal work, "Théorie analytique de la chaleur." While not the primary
focus, Fourier's mention highlighted the potential relevance of fractional calculus in physical
processes, setting the stage for further investigation.

Joseph Liouville® significantly advanced the field in 1832 with his work "Mémoire sur le
calcul des différentielles a indices quelconques.”" Liouville developed systematic methods for
fractional integration and differentiation, introducing the Riemann-Liouville fractional
integral and derivative. His contributions provided a rigorous mathematical framework,
enabling the application of fractional calculus to various mathematical and physical
problems.

Paul Lévy, in his 1925 work "Calcul des Probabilités,"* applied fractional calculus to
probability theory, specifically in the context of stochastic processes. Lévy demonstrated how
fractional derivatives could describe anomalous diffusion and long-range dependence in
probability distributions, showcasing the utility of fractional calculus in modeling real-world
phenomena that deviate from classical theories.

Norbert Wiener *further incorporated fractional calculus into the study of stochastic processes
with his 1923 work "Differential space.” He developed the concept of Wiener processes,
essential in the theory of Brownian motion and other areas of probability and statistics.
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Wiener's contributions underscored the applicability of fractional calculus in understanding
complex systems with memory and hereditary properties.

In 1949, Marcel Riesz extended the Riemann-Liouville integral to multi-dimensional spaces
in his work on fractional partial differential equations. Riesz's contributions laid the
groundwork for applying fractional calculus in various fields, including fluid dynamics and
electromagnetism, broadening the scope of its applications.

Kenneth S. Miller and Bertram Ross’ provided a comprehensive introduction to fractional
calculus in their 1993 book, "An Introduction to the Fractional Calculus and Fractional
Differential Equations.” Their work served as a crucial resource for researchers and
practitioners, offering detailed explanations and examples of fractional differential equations
in diverse scientific fields, significantly advancing the understanding and application of
fractional calculus.

Igor Podlubny's 19998 book "Fractional Differential Equations” is considered a seminal work
in the field. Podlubny offered an extensive review of fractional differential equations and
their applications, introducing new methods for solving these equations. His work highlighted
the relevance of fractional calculus in control theory, viscoelasticity, and anomalous
diffusion, significantly advancing the field.

Francesco Mainardi®, in his 1997 research "Fractional Calculus: Theory and Applications,"
explored the theoretical foundations and practical applications of fractional calculus in
various physical phenomena. Focusing on viscoelastic models and anomalous diffusion
processes, Mainardi demonstrated the versatility and effectiveness of fractional calculus in
describing complex systems, encouraging further research in the field.

Richard L. Magin highlighted the application of fractional calculus in bioengineering in his
2006 work "Fractional Calculus in Bioengineering."'® Magin demonstrated how fractional
derivatives could accurately describe the viscoelastic properties of biological tissues and the
dynamics of complex biological processes. His research underscored the potential of
fractional calculus to revolutionize biomedical engineering and enhance the understanding of
biological phenomena.

3. HISTORICAL MILESTONES

Early Beginnings: Leibniz and L'Hopital (1695)

The inception of fractional calculus can be traced back to a letter written by Gottfried
Wilhelm Leibniz to Guillaume de I'Ho6pital in 1695. Leibniz, one of the co-inventors of
calculus, pondered the possibility and meaning of a derivative of non-integer order. He
specifically questioned what a derivative of order 1/2 would imply. This inquiry was
groundbreaking, as it challenged the traditional notions of calculus, which were firmly rooted
in integer-order operations. L'Hopital, a prominent mathematician of the time, responded
with curiosity and did not dismiss the idea. Instead, he expressed interest and openness to
exploring the concept further. This correspondence marks the first recorded instance of
fractional calculus being discussed, setting the stage for future mathematical inquiries into
derivatives and integrals of arbitrary orders.

The 18th Century: Euler and Fourier

During the 18th century, significant contributions to the development of fractional calculus
were made by mathematicians such as Leonhard Euler and Joseph Fourier. Euler, renowned
for his extensive work in various branches of mathematics, explored the concept of fractional
calculus in the context of series expansions and special functions. His investigations included
the generalization of exponential functions and the Gamma function, which plays a crucial
role in defining factorials for non-integer values. Euler's work hinted at the broader
applicability of fractional calculus beyond integer-order operations.

Joseph Fourier, known for his ground-breaking work on heat conduction, made a notable
contribution to fractional calculus in his 1822 publication, "Théorie analytique de la chaleur."
While Fourier's primary focus was on integer-order derivatives in his heat equation, he
briefly mentioned the concept of fractional differentiation. Fourier's acknowledgment of
fractional calculus in the study of heat transfer was significant as it suggested that fractional
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derivatives could be useful in modeling physical processes, thereby laying the groundwork
for future explorations and applications.

The 19th Century: Liouville's Formalization

The 19th century marked a pivotal period in the formalization of fractional calculus,

primarily through the work of Joseph Liouville. In the 1830s, Liouville systematically

developed methods for fractional integration and differentiation, providing a rigorous

mathematical framework that would enable further theoretical and practical developments.

Liouville's contributions included the introduction of the Riemann-Liouville fractional

integral and derivative, named in part after Bernhard Riemann, who also contributed to the

foundations of calculus.

Liouville's approach to fractional calculus involved extending the definition of the integral to

non-integer orders. He defined the fractional integral of order o for a function f(t) as:
I°f(t) = g [t — )" f(r)dr

where I'(a) is the Gamma function. This definition allowed for the integration of functions to

non-integer extents, thus generalizing the concept of repeated integration.

Furthermore, Liouville defined the corresponding fractional derivative through this integral:

D°f(t) = 4=1"""£(t)

for n—1<a <n. This definition linked the fractional derivative to its integral counterpart,

ensuring consistency with traditional calculus when « is an integer.

Liouville's work provided a solid mathematical foundation for fractional calculus, enabling

its application in various fields of science and engineering. His formalization allowed

mathematicians and scientists to explore the potential of fractional derivatives and integrals in

modeling complex systems with memory and hereditary properties, which are not adequately

described by integer-order calculus alone. In summary, the early contributions of Leibniz and

L'Hopital, followed by the advancements made by Euler and Fourier, and the formalization

efforts by Liouville, collectively laid the groundwork for the development of fractional

calculus. These historical milestones highlight the gradual evolution of fractional calculus

from a theoretical curiosity to a rigorous mathematical framework with wide-ranging

applications.

The 20th Century: From Theory to Applications

The 20th century witnessed a transition of fractional calculus from theoretical investigations

to practical applications. Notable contributions came from mathematicians and scientists such

as Paul Lévy, who applied fractional calculus to probability theory, and Norbert Wiener, who

incorporated it into the study of stochastic processes. During this period, key definitions of

fractional derivatives, including the Riemann-Liouville, Grunwald-Letnikov, and Caputo

derivatives, were formalized.

4. FUNDAMENTAL THEORIES

Riemann-Liouville Fractional Integral and Derivative

The Riemann-Liouville fractional integral and derivative are foundational concepts in the

theory of fractional calculus, providing a rigorous framework for extending the traditional

notions of integration and differentiation to non-integer orders. This section delves into the

definitions, properties, and significance of these concepts.

A Riemann-Liouville Fractional Integral

The Riemann-Liouville fractional integral of order o>0 for a function f(t) is defined as:

) = —— [ (t= 0D
1®—ﬁ5£wﬂ><ﬂr

Here, I'(a) is the Gamma function, which generalizes the factorial function to non-integer
values:

L(e) =[5 a* le2ds
The Riemann-Liouville fractional integral can be viewed as an extension of the traditional n-
fold integral, where n is a positive integer. For integer n, the n-fold integral is given by:
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"f(t) = f f f f(t,)dt,dt, - dty
0 Jo 0

When a is an integer, the Riemann-Liouville fractional integral reduces to the traditional
repeated integration. For non-integer a, it represents a "fractional™ accumulation of the
function f(t), providing a continuous spectrum of integration orders.

Significance of the Riemann-Liouville Fractional Integral and Derivative

The Riemann-Liouville fractional integral and derivative provide a robust mathematical
framework for extending traditional calculus to fractional orders. This framework has been
instrumental in various fields, including:

Physics: Modeling anomalous diffusion, viscoelastic materials, and other processes with
memory effects.

Engineering: Designing fractional-order control systems, improving the performance of
controllers by incorporating fractional dynamics.

Finance: Analyzing financial markets and modeling price dynamics using fractional
stochastic processes.

Biology: Describing the complex dynamics of biological systems, such as the viscoelastic
properties of tissues and the anomalous diffusion of particles in heterogeneous media.

B. Grunwald-Letnikov Fractional Derivative

The Grunwald-Letnikov definition approximates the fractional derivative using a limiting

process similar to the traditional definition of a derivative:
[t/h]
DEE(E) = lim — z (=DXCHf(t — kh)
h—-0 h® — k
This approach connects the fractional derivative to the discrete calculus, making it suitable
for numerical implementations.
Discrete Approximation: The Grinwald-Letnikov derivative is a discrete approximation,
making it particularly suitable for numerical implementations.
Advantages
Simplicity and Flexibility:
Simple Formulation: The definition involves straightforward finite differences, which are
easy to implement and understand.
Numerical Implementation: Its discrete nature makes it highly suitable for numerical
methods and simulations, which are crucial in practical applications.
Applications in Differential Equations:
Numerical Solutions: The Grinwald-Letnikov approach is often used to obtain numerical
solutions to fractional differential equations, offering a flexible and accurate method for
approximating solutions.
Modeling Real-World Systems:
Memory Effects: Like other fractional derivatives, the Grinwald-Letnikov derivative can
model systems with memory effects and hereditary properties, making it useful in various
scientific and engineering fields.
Specific Applications
Control Theory:
Fractional-Order Systems: Used in the analysis and control of fractional-order systems,
providing a tool to model and control systems with non-integer dynamics.
Signal Processing:
Discrete-Time Systems: The Griinwald-Letnikov derivative is particularly useful in discrete-
time signal processing, where signals are inherently sampled and processed in discrete
intervals.
Viscoelasticity:
Discrete Models: In the field of viscoelasticity, this derivative helps create discrete models of
materials that exhibit complex time-dependent behaviors, enabling better simulation and
prediction of material responses.
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Anomalous Diffusion:
Fractional Diffusion: Used to model anomalous diffusion processes in various fields such as
physics and biology, where the classical diffusion equation is not adequate.
Significance in Research and Applications
Numerical Methods:
Discrete Nature: The Griinwald-Letnikov derivative’s discrete nature makes it a cornerstone
in numerical methods for solving fractional differential equations, facilitating the
implementation of algorithms and simulations.
Versatility:
Wide Application: Its simplicity and flexibility make it applicable across a wide range of
fields, from control theory to material science, and from signal processing to biological
modeling.
Foundation for Other Methods:
Building Block: It serves as a foundation for developing other numerical methods and
approximations in fractional calculus, contributing to the advancement of computational
techniques.
C. Caputo Fractional Derivative
The Caputo derivative is particularly useful in initial value problems and is defined as:
for n—1<a< n. The Caputo derivative is advantageous because it allows for the inclusion of
initial conditions in a manner similar to integer-order differential equations.

1 t
DU(t) = —— | (t—1)" M (D)d
O =g ) € (1)de
Initial Conditions: The Caputo derivative allows for the use of traditional initial conditions
(integer-order derivatives) which are often more intuitive and easier to implement compared

to the Riemann-Liouville derivative.

Advantages
1. Compatibility with Initial Conditions:
o Traditional Initial Conditions: Caputo derivatives use integer-order

derivatives for initial conditions, making them more practical for physical and engineering
applications where initial states are often given in terms of integer-order derivatives.

o Ease of Interpretation: The use of traditional initial conditions aligns with
classical methods, facilitating easier interpretation and application in solving differential
equations.

2. Applications in Differential Equations:

o Fractional Differential Equations: Caputo derivatives are widely used in
solving fractional differential equations (FDEs) due to their practical initial conditions. This
makes them suitable for modeling physical processes with memory and hereditary properties.
o Better Representation: They provide a better representation of processes that
exhibit anomalous diffusion, viscoelasticity, and other phenomena where the system's history
influences its future behavior.

3. Modeling Real-World Systems:

o Memory Effects: Caputo derivatives are particularly effective in modeling
systems with memory effects, such as materials with viscoelastic properties and biological
systems exhibiting anomalous diffusion.

o Hereditary Properties: They capture hereditary properties in control systems,
improving the design and performance of fractional-order controllers.

Specific Applications

1. Control Theory:

o Fractional-Order Controllers: Caputo derivatives are used to design
fractional-order PID controllers, offering enhanced flexibility and performance over
traditional controllers by accurately modeling systems with memory and hereditary
characteristics.

2. Viscoelasticity:
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o Material Behavior: In viscoelasticity, Caputo derivatives model the stress-
strain relationship more accurately for materials that exhibit both creep and stress relaxation
over time.

3. Anomalous Diffusion:

o Biological Systems: They are used to model anomalous diffusion in biological
systems, such as the movement of cells or particles in heterogeneous media, where classical
diffusion equations fail to capture the observed behaviors.

4. Signal Processing:

o Fractional Filters: In signal processing, Caputo derivatives help design
fractional-order filters that offer improved frequency response characteristics and are better
suited for systems with long-term memory effects.

Significance in Research and Applications

The Caputo fractional derivative's ability to handle traditional initial conditions and its
applicability to a wide range of real-world systems make it a crucial tool in fractional
calculus. It bridges the gap between classical and fractional calculus, providing a more
comprehensive framework for modeling and analyzing complex dynamic systems. This
significance extends across various disciplines, including engineering, physics, biology, and
finance, where accurately capturing the effects of memory and hereditary properties is
essential for developing robust models and solutions.

5. MODERN APPLICATIONS

I. Control Theory

Fractional calculus plays a significant role in control theory, especially in designing
controllers for systems that exhibit memory effects or hereditary properties.

1. Fractional PID Controller:

Definition: A Fractional PID controller is a generalization of the traditional PID controller,
which uses fractional-order integrals and derivatives. It is denoted as PID™, 1 and p are the
orders of the fractional integral and derivative, respectively.

Advantages:

Flexibility: Provides more tuning parameters (A and p) compared to the classical PID
controller, allowing for better adaptation to the dynamic behavior of complex systems.
Performance: Often exhibits superior performance in terms of robustness and stability,
especially in systems with long memory or hereditary characteristics.

Applications: Used in various industries such as aerospace, automotive, and robotics, where
precise control is crucial.

1. Viscoelasticity

Fractional calculus offers a powerful framework for modeling the viscoelastic behavior of
materials, which exhibit both elastic and viscous characteristics over time.

1. Fractional Derivative Models:

Definition: Fractional derivative models incorporate derivatives of non-integer orders to
describe the viscoelastic behavior of materials.

Advantages:

Accuracy: Provides a more accurate representation of materials that exhibit both creep (time-
dependent deformation under constant stress) and stress relaxation (time-dependent decrease
in stress under constant strain).

Intermediate States: Captures the intermediate states between purely elastic (instantaneous
response) and purely viscous (steady flow) behavior.

Applications: Utilized in fields such as material science, biomechanics, and polymer science
to study and predict the behavior of complex materials.

I11. Anomalous Diffusion

Fractional calculus is essential in modeling anomalous diffusion processes where the
diffusion rate deviates from the classical Brownian motion.

1. Fractional Diffusion Equations:

Definition: Fractional diffusion equations use fractional-order derivatives to describe the
diffusion process.
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Advantages:
Sub-Diffusion and Super-Diffusion: Capable of modeling both sub-diffusive (slower than
normal diffusion) and super-diffusive (faster than normal diffusion) behaviors.
Heterogeneous Media: Provides a better understanding of diffusion through heterogeneous
media, which is common in biological and physical systems.
Applications: Widely used in biology to model cell movement, in physics to describe particle
transport in porous media, and in finance to represent anomalous diffusion in stock prices.
IV. Electrical Engineering and Signal Processing
Fractional calculus has numerous applications in electrical engineering and signal processing,
enhancing the analysis and design of circuits and filters.
1. Fractional-Order Filters:
Definition: Filters that use fractional-order integrals and derivatives in their design.
Advantages:
Frequency Response: Offers improved control over the frequency response characteristics,
leading to better performance in specific applications.
Long-Term Memory: Useful in modeling systems with long-term memory effects, such as
certain electrochemical processes.
Applications: Applied in signal processing for noise reduction, in communications for
filtering signals, and in control systems for shaping the dynamic response.
6. CONCLUSION
Fractional calculus has evolved from a theoretical curiosity to a robust mathematical
framework with diverse applications. The development of key definitions and the
contributions of numerous mathematicians have paved the way for its use in modern science
and engineering. As research continues, the potential applications of fractional calculus are
likely to expand, offering new insights and solutions to complex problems across various
disciplines.
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