

SOME FIXED POINT THEOREMS FOR ISHIKAWA ITERATIONS

Reena Yadav, Scholar, Department of Mathematics, Sunrise University, Sunrise University, Alwar (Raj.), India
 Dr. Uma Shankar, Associate Professor, Department of Mathematics, Sunrise University, Alwar, (Raj.), India

Abstract

This paper focuses on the convergence of certain Ishikawa type iterations to fixed points of maps satisfying the contractive conditions defined in the earlier chapter. This paper embodies some fixed point theorems for contractive conditions using Ishikawa iterations established by Albert K. Kalinde and B.E. Rhoades, Kalishankar Tiwary and S.C. Debnath and Rhoades. In 1992, Albert K. Kalinde and B.E. Rhoades successfully derived sufficient conditions for the coefficients of Ishikawa iteration process. They proved, if the Ishikawa iterates of a continuous self-map G (of the unit interval) converge, then they converge to a fixed point of G. They derived these following results:

Theorem 1

Let G be a continuous self map of $L \equiv [0,1]$ so that the Ishikawa iterates $\{u_n\}$ converge,

- 1 If $\liminf \alpha_n > 0$ and $\liminf \beta_n = 0$, then $\{u_n\}$ converges to a fixed point of G.
- 2 If A is regular and $\liminf \beta_n = 1$, then $\{u_n\}$ converges to a fixed point of G^2 .

Proof

- (1) Let $\lim u_n = z$. Then, \exists a subsequence $\{n_i\}$ of $\{n\}$ such that $\lim_i \beta_{n_i} = 0$. Therefore $y_{n_i} = (1 - \beta_{n_i}) + \beta_{n_i} G u_{n_i}$

$$y_{n_i} - u_{n_i} = \beta_{n_i} (G u_{n_i} - u_{n_i}).$$

Thus $\lim |y_{n_i} - u_{n_i}| \leq 2 \beta_{n_i}$, which implies that $\lim_i y_{n_i} = z$.

Because $u_{n_i+1} - u_{n_i} = \alpha_{n_i} (G y_{n_i} - u_{n_i})$ and

$\liminf \alpha_n |Gz - z| \leq 0$, Therefore, $Gz = z$.

- (2) $\because \lim \sup \beta_n \leq 1 = \lim \inf \beta_n$ and $\lim \beta_n = 1$.
 $\therefore y_n \rightarrow Gz$. By the continuity of G,

$Gy_n \rightarrow G^2 z$. Since $u_n \rightarrow z$ and A is regular, therefore,

$$G^2 z = z.$$

By the example given below we can prove that theorem (1) is not applicable in an arbitrary Banach space with conditions $\liminf \alpha_n < 0$ and $0 < \liminf \beta_n < 1$. Define $u(t)$ as a continuous function on L (closed unit interval) with conditions given below and E is a space of $u(t)$,

Conditions : $u(0)=0$, $u(1) = 1$, $0 \leq u(t) \leq 1$, $u_0 = u_0(t)=1$, $f(u)[t]=u(t)$.

Using, $u_{n+1} = (1 - \alpha_n) u_n + \alpha_n G y_n$, $y_n = (1 - \beta_n) u_n + \beta_n G u_n$, $n \geq 0$.

Choosing $\alpha_n = 2/3$, $\beta_n = 1/2$, we get

$$u_n = \frac{u_0 (1 + t + t^2)^n}{3^n}, \quad y_n = \frac{u_0 (1 + t) (1 + t + t^2)^n}{2 \cdot 3^n}$$

\therefore For each t, $\{u_n\}$ converges but $\{u_n\}$ has no fixed points.

Theorem 2

Let G be a continuous self map of L (closed unit interval) and $\{\alpha_n\}$, $\{\beta_n\}$ satisfy the conditions.

- i) $\alpha_n \geq 0$, $\beta_n \leq 1$, $\forall n$
- ii) $\lim \beta_n = 0$
- iii) $\sum \alpha_n = \infty$

Then $u_{n+1} = (1 - \alpha_n) u_n + \alpha_n G [(1 - \beta_n) u_n + \beta_n G u_n]$
 converges to a fixed point of G.

Proof

First of all we shall prove that $\{u_n\}$ satisfying three conditions which follow its definition, converges.

Definition of u_n

$$u_{n+1} = (1-\alpha_n)u_n + \alpha_n G[(1-\beta_n)u_n + \beta_n Gu_n], \text{ for } n \geq 0 \dots \quad (1)$$

Conditions :

$\{\alpha_n\}, \{\beta_n\}$ satisfy the conditions

$$1 \quad \alpha_n \geq 0, \beta_n \leq 1, \forall n$$

$$2 \quad \lim \beta_n = 0$$

$$3 \quad \sum \alpha_n \beta_n = \infty \text{ and } u_0 \in L$$

Equation (1) can be modified in the form,

$$u_{n+1} = (1-\alpha_n)u_n + \alpha_n Gy_n, \text{ where } y_n = (1-\beta_n)u_n + \beta_n Gu_n, n \geq 0 \dots \quad (2)$$

Let us consider the existence of integer k such that $Gx_k = x_k$. By equation (2), we get

$y_k = u_k$ which gives $u_{k+1} = u_k$. Therefore by induction,

$u_n = u_k, \forall n \geq k$. Hence the sequence converges to u_k .

Now suppose that $Gx_n \neq x_n, \forall n$. Because $\{u_n\}$ is contained in L . Therefore, the sequence $\{u_n\}$ has at least one limit point in L . Let, $\liminf_n u_n = \xi_1$ and $\limsup_n u_n = \xi_2$. Then $\xi_1 \leq \xi_2$. Taking $\xi_1 < \xi_2$, we shall prove that $\xi_1 \leq G\xi_1$ and $G\xi_2 \leq \xi_2$. These two inequalities are true if $\xi_1 = 0$ and $\xi_2 = 1$. When $\xi_2 < 1$, proof is achieved by contradiction. If $\xi_2 < G\xi_2$, by the continuity of G at ξ_2 , there exists $\delta > 0$ such that $u < Gu, \forall u \in (\xi_2 - \delta, \xi_2 + \delta)$. Choosing $\delta < \xi_2 - \xi_1$ and using condition (2), we have $\limsup_n u_n = \xi_2 = \limsup_n y_n$. By the definition of \limsup , there exists $a, \delta > 0$ and n_0 such

that

$$u_n < \xi_2 + \delta \text{ and } y_n < \xi_2 + \delta, \forall n \geq n_0 \dots \quad (3)$$

\therefore The subsequence $\{u_{n_k}\}$ of $\{u_n\}$ converging to ξ_2

$\therefore n_0$ can be chosen in such way that $u_{n_k} \in (\xi_2 - \delta, \xi_2 + \delta), \forall k \geq k_0$ and $n_{k_0} \geq n_0$. Taking, $A = \{n : n \geq n_0 \text{ and } u_n \in (\xi_2 - \delta, \xi_2 + \delta)\} \dots \quad (4)$

we get A is non empty.

Now we shall prove A is equivalent to a number N . Let us consider any element of A be n . Then $u_n < Gu_n$ giving $u_n \leq y_n$. By (3), we arrive at the conclusion that $y \in (\xi_2 - \delta, \xi_2 + \delta)$. Now we have $u_n \leq y_n < Gy_n$ and from (2), we get $u_{n+1} - u_n = \alpha_n (Gy_n - u_n) \geq 0$ which implies $u_n \leq u_{n+1}$. Because $n+1 > n \geq n_0$, (3) gives $\xi_2 - \delta < u_n \leq u_{n+1} < \xi_2 + \delta$ and $u_{n+1} \in (\xi_2 - \delta, \xi_2 + \delta)$. This shows that $n+1$ belongs to (4) and by induction A is equivalent to N . Hence $u_n \in (\xi_2 - \delta, \xi_2 + \delta); \forall n \geq n_0$. Because δ satisfies the condition $\delta < \xi_2 - \xi_1$ or $\xi_1 < \xi_2 - \delta$, Then ξ_1 is not a limit point of $\{u_n\}$, which is a contradiction. Therefore, $G\xi_2 \leq \xi_2$. Similarly, for $\xi_1 > 0$ and $G\xi_1 < \xi_1$, we get $\xi_1 \leq G\xi_1$.

Now we shall prove that each $u \in (\xi_1, \xi_2)$ is a fixed point of G . If possible, let $\overset{*}{u} \in (\xi_1, \xi_2)$ so that $\overset{*}{u} \in G\overset{*}{u}$. Because G is cont at $\overset{*}{u}$, therefore, $\exists \delta > 0$ such that $u < Gu, \forall u \in (\overset{*}{u} - \delta, \overset{*}{u} + \delta)$ where δ is taken so that $0 < \delta < \frac{1}{2}(\overset{*}{u} - \xi_1)$. As ξ_2 is a limit point of the sequence $\{u_n\}$, then $\exists n_0$ such that $\overset{*}{u} < u_{n_0}$. Because L is compact and G is cont on L , resulting G is uniformly cont. on L . Thus condition (2) implies that n_0 can be chosen such that,

$$u_n - \delta/2 < y_n < u_n + \delta/2 \dots \quad (5) \text{ and}$$

$$Gu_n - \delta/2 < Gy_n < Gu_n + \delta/2, \forall n \geq n_0.$$

Since $\overset{*}{u} < u_{n_0}$, then $\overset{*}{u} < u_n < \overset{*}{u} + \delta$ or $\overset{*}{u} + \delta \leq u_{n_0}$.

If $\overset{*}{u} < u_{n_0} < \overset{*}{u} + \delta$, then $u_{n_0} < Gu_{n_0}$ and resulting $u_{n_0} \leq y_{n_0}$.

Which implies $\overset{*}{u} < y_{n_0} < \overset{*}{u} + \delta$ or $\overset{*}{u} + \delta \leq y_{n_0}$.

Now assuming $\hat{u}^* < y_{no} < \hat{u}^* + \delta$. Then $y_{no} < G y_{no}$

which gives $u_{no} \leq y_{no} < G y_{no}$. Therefore, $u_{no+1} - u_{no} = \alpha_{no} (G y_{no} - u_{no}) \geq 0$ or $\hat{u}^* < u_{no} < u_{no+1}$.

If we take $\hat{u}^* + \delta \leq y_{no}$, we get

$$G u_{no} - \delta/2 \geq y_{no} - \delta/2 \geq \hat{u}^* + \delta - \delta/2 = \hat{u}^* + \delta/2 \text{ on account of } y_{no} \leq G u_{no}.$$

By (3.2.5), we have $G y_{no} > G u_{no} - \delta/2 \geq \hat{u}^* + \delta/2$

Which additionally to the condition $\hat{u}^* < u_{no}$ forces us to conclude $u_{no+1} > \hat{u}^*$.

Eq. (5) gives two cases for the condition $\hat{u}^* + \delta \leq u_{no}$

Case 1 : When $y_{no} \in (\hat{u}^* + \delta/2, \hat{u}^* + \delta)$

In this case, $u_{no} < G y_{no}$ which implies

$$u_{no+1} = (I - \alpha_{no}) u_{no} + \alpha_{no} G y_{no} - u_{no} \geq \alpha_{no} (y_{no} - u_{no})$$

By Eq (5) and $\hat{u}^* + \delta \leq u_{no}$, we get

$$u_{no+1} \geq u_{no} - \alpha_{no} \delta/2 \geq \hat{u}^* + \delta - \delta/2 = \hat{u}^* + \delta/2 > \hat{u}^*$$

Case 2 : When $y_{no} \geq \hat{u}^* + \delta$. Now we faces two possibilities depending upon $G y_{no} > u_{no}$ or $G u_{no} < u_{no}$.

If $G y_{no} > u_{no}$, then $\hat{u}^* + \delta \leq u_{no} + y_{no}$ and application of (5) gives us. $u_{no+1} = u_{no} - \alpha_{no} u_{no} + \alpha_{no} + G y_{no}$

$$\begin{aligned} &\geq u_{no} - \alpha_{no} u_{no} + \alpha_{no} + G u_{no} - \alpha_{no} \delta/2 \\ &\geq u_{no} + \alpha_{no} (G u_{no} - u_{no}) - \delta/2 \geq u_{no} - \delta/2 \\ &\geq \hat{u}^* + \delta - \delta/2 = \hat{u}^* + \delta/2 > \hat{u}^* \end{aligned}$$

If $G u_{no} < u_{no}$ then $\hat{u}^* + \delta \leq y_{no} \leq u_{no}$. This implies $u_{no+1} \geq \hat{u}^* + \delta > \hat{u}^*$ which further gives us $y_{no} \leq G y_{no}$. Also, if $G y_{no} \leq y_{no}$, we have $G y_{no} < y_{no} < u_{no}$ which ultimately gives $u_{no+1} - u_{no} = \alpha_{no} (G y_{no} - u_{no}) \leq 0$ or $u_{no} \geq u_{no+1}$. Because \hat{u}^* and δ are positive real numbers. Therefore, we can find a natural number n_1 satisfying $u_{no} \geq u_{no+1} > \hat{u}^* - n_1 \delta$

Now applying this process to $u_{no+1}, u_{no+2}, u_{no+3}, \dots$ etc. we can prove the existence of a natural number k_0 satisfying the conditions $\hat{u}^* - k_0 \delta > \xi_1$, and $u_n > \hat{u}^* - k \delta, \forall n \geq n_0$. If it is not so, then for any natural number k , we have either $\hat{u}^* - k \delta \leq \xi_1$ or \exists a number $n_k \geq n_0$ such that $\hat{u}^* - k \delta \geq u_{n_k}$. For $k=1$, $\hat{u}^* - \delta \leq \xi_1$ which is a contradiction of the choice δ to satisfy $2\delta < \hat{u}^* - \xi_1$ and then the condition $\delta < \hat{u}^* - \xi_1$.

Thus, the second case bring us with $\hat{u}^* \geq u_{n_k} + k \delta \geq k \delta \geq 0, \forall k$. Because \hat{u}^* is finite, therefore $\{k \delta\}$ is a bounded sequence, which is a contraction. Therefore there exists at least one k_0 such that $u_n > \hat{u}^* - k_0 \delta > \xi_1, \forall n \geq n_0$, showing that ξ_1 is not a limit point of $\{u_n\}$ and contradicting $\xi_1 = \liminf u_n$.

If we take $u_* \in (\xi_1, \xi_2)$ in such a way that $Gu_* < u_*$, we arrive at the conclusion that there exist a

$k_1 \in \mathbb{N}$ such that $u_* + k_1$ such that ξ_2 and $u_n < u_* - k_1 \delta$, $\forall n \geq n_0$. This implies ξ_2 is not a limit point of $\{u_n\}$ and contradicts the fact $\xi_2 = \limsup_n u_n$. Therefore each point of (ξ_1, ξ_2) is a fixed point of G . This argument along with the continuity of G proves the impossibility of $\xi_1 < G\xi_1$ and $G\xi_2 < \xi_2$ and hence ξ_1 and ξ_2 are not fixed points of G .

Now, by induction method, we shall prove that the sequence $\{u_n\}$ converges to ξ_1 and ξ_2 . For this, fix $\epsilon < \frac{1}{2}(\xi_2 - \xi_1)$. Because G is uniformly cont. and $0 < \frac{1}{2}(\xi_2 - \xi_1)$, therefore for any $\epsilon > 0$, \exists an $\alpha(\epsilon) > 0$ satisfying the condition $|Gx - Gy| < \epsilon$, $\forall x, y \in L$ and $|x - y| < \alpha(\epsilon)$

(6)

Taking $\delta(\epsilon) = \min\{\alpha(\epsilon), \epsilon\} > 0$. By the second condition of the theorem along with the properties of \liminf , for $\alpha(\epsilon) > 0$, $\exists n_1 \in \mathbb{N}$ such that,

$$\xi_1 - \delta(\epsilon) < u_n \text{ and } \xi_1 - \delta(\epsilon) < y_n, n \geq n_1 \dots \quad (7)$$

$$\text{and } u_n - \delta(\epsilon) < y_n < u_n + \delta(\epsilon)$$

Now define,

$$A_\delta = \{n \in \mathbb{N}; n \geq n_1 \text{ and } u_n, y_n \in (\xi_1 - \delta(\epsilon), \xi_1 + \delta(\epsilon))\} \dots \quad (8)$$

Because $\xi_1 = \liminf u_n$ and from second condition of the theorem, it is very clear that A_δ is non empty. Let n be an arbitrary element of A_δ . We need to show that $n+1 \in A_\delta$.

By the definition of A_δ and Eq. (6) along with ξ_1 is a fixed point of G , it follows,

$$|Gy_n - u_n| \leq |Gy_n - \xi_1| + |\xi_1 - u_n| < \epsilon + \delta(\epsilon) < 2\epsilon$$

Hence we have, $|u_{n+1} - u_n| \leq |Gy_n - u_n| \leq 2\epsilon$. Because $Gu_n \neq u_n$ and $u_n \in (\xi_1 - \delta(\epsilon), \xi_1 + \delta(\epsilon))$, therefore, $\xi_1 - \delta(\epsilon) < u_n < \xi_1$ and Eq. (7) gives us $\xi_1 - \delta(\epsilon) < u_{n+1}$. Ultimately, by this above argument, $\xi_1 - \delta(\epsilon) < u_{n+1} \leq u_n + 2\epsilon < \xi_1 + 2\epsilon$ with $\xi_1 + 2\epsilon < \xi_2$ on account of $2\epsilon < \xi_2 - \xi_1$. Hence $\xi_1 - \delta(\epsilon) < u_{n+1} < \xi_1 + 2\epsilon$ is impossible. Thus, $u_{n+1} \in (\xi_1 - \delta(\epsilon), \xi_1 + \delta(\epsilon))$. Now for y_{n+1} , by Eq. (7), $\xi_1 - \delta(\epsilon) < y_{n+1}$.

Now we are left with, to prove $y_{n+1} < \xi_1 + \delta(\epsilon)$. By Eq. (7), we get $u_{n+1} - \delta(\epsilon) < y_{n+1} < u_{n+1} + \delta(\epsilon)$ as $n+1 > n > n_1$. As $u_{n+1} < \xi_1$, we get $\xi_1 - \delta(\epsilon) < y_{n+1} < \xi_1 + \delta(\epsilon)$ or $y_{n+1} \in (\xi_1 - \delta(\epsilon), \xi_1 + \delta(\epsilon))$. This implies $n+1 \in A_\delta$ defined by (8) and A_δ is equivalent to \mathbb{N} . Hence $|u_n - \xi_1| < \delta(\epsilon) \leq \epsilon$, $\forall n \geq n_1$. Because this inequality is valid for every small $\epsilon > 0$ and $\{u_n\}$ converges to ξ_1 .

By the same procedure, $\{u_n\}$ also converges to ξ_2 . But the uniqueness of the limit point of the sequence is contracted by $\xi_1 \neq \xi_2$.

$$\therefore \xi_1 = \xi_2 \text{ and } \{u_n\} \text{ converges.}$$

Let $a_0 = \xi_1 = \xi_2$, then $Ga_0 = a_0$

Hence the completion of proof

A weak derivation for general Banach spaces given by Rhoades is following.

Theorem 3 : Let K be a non empty closed convex subset of a Banach space. G be a cont. self map of K whose set of fixed points is non empty i.e. $F(G) \neq \emptyset$.

Let $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences satisfying the following conditions.

$$1 \quad 0 \leq \alpha_n, \beta_n \leq 1, \forall n$$

$$2 \quad \lim \beta_n = 0$$

$$3 \quad \limsup \alpha_n > 0.$$

If $\{u_{n+1}\}$ converges, then it converges to a fixed point of G , where u_{n+1} is defined as,

$$u_{n+1} = (1 - \alpha_n) u_n + \alpha_n G[(1 - \beta_n) u_n + \beta_n Gu_n], n \geq 0$$

Proof

Let a_0 be a limit point of $\{u_n\}$. Because K is closed and convex, $G(K) \subset K$.

Therefore, $a_0 \in K$. By Eq. (2), we get $\|y_n - u_n\| = \beta_n \|Gu_n - u_n\|$. As G is cont, the sequence $\{Gu_n - u_n\}$ also converges. Second condition of the theorem results, into $\lim \|y_n - u_n\| = \lim \beta_n$, $\lim \|Gu_n - u_n\| = 0$ and therefore $\lim y_n = a_0$, $\lim Gy_n = Ga_0$. Now, we shall prove that $\lim Gy_n = a_0$.

By Equation (2), $\|u_{n+1} - u_n\| = \alpha_n \|Gy_n - u_n\|$.

Now, we get

$$\lim \sup \|u_{n+1} - u_n\| = \lim \sup \alpha_n \lim \sup \|Gy_n - u_n\| = 0$$

Now condition (III) implies that $\lim \|Gy_n - u_n\| = 0$

which further implies that a_0 is a fixed point of G .

REFERENCES

- 1 Dotson W.G., J. London Math. Soc., 2 (1972), 408-10.
- 2 Ganguly A., Math. Seminar Notes, 8(1980), 343-45.
- 3 Ganguly D.K. and Bandyopandhyay D., Some results on fixed point theorem using infinite matrix of regular type, Soochow J. of Math., 17(1991), 269-85.
- 4 Goebel K., Kirk W.A. and Shimi T.N., Bull. U.M.I., 7(1973), 67-75.
- 5 Gornicki J. and Rhoades B.E., A general fixed point theorem for involutions, Indian J. Pure Applied Math., 27(1996), 13-23.
- 6 Groetsch C.W., A note on segmenting Mann iterates, J. Math. Analysis and Applied., 40(1972), 369-72.
- 7 Ishikawa S., Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1974), 147-50.
- 8 Istratescu, Vasile. I., Fixed point theory, an Introduction, 1, 26.
- 9 Kalinde Albert K. and Rhoades B.E., Fixed point Ishikawa Iterations, 170(1992), 600-06.
- 10 Khan M.S., Glasgow Math. J., 23(1982), 1-8.
- 11 Khan M.S. and Imdad M., J. Austral Math. Soc., 37(1984), 169-77.
- 12 Khan L.A., Fixed points by Ishikawa iterates in metric linear space, Math. Rep. Toyama Univ., 12(1989), 57-63.
- 13 Mann W.R., Mean value methods in iteration, Proc. Amer. Math. Soc., 23(1952), 506-10.
- 14 Rhoades, B.E., A general principle for Ishikawa iterations, Math. Morevica. (1977), 21-26.
- 15 Sharma P.L. and Yuel A.K., Mat Vesnik, 19(1982), 173-76.
- 16 Shaskin, Yu. A., Fixed points, 39.
- 17 Simmous, G.F., Introduction to Topology and Modern Analysis, 71, 148, 212, 248, 338.
- 18 Tiwary Kalishankar and Lahiri B.K., Bull, Cal. Math. Soc., 81(1989), 427-34.
- 19 Tiwary Kalishankar and Debnath S.C., on Ishikawa Iterations, Indian J. Pure Appl. Math., 26(1995), 743-50.