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Abstract

This paper focuses on the convergence of certain Ishikawa type iterations to fixed points
of maps satisfying the contractive conditions defined in the earlier chapter. This paper embibes
some fixed point theorems for contractive conditions using Ishikawa iterations established by
Albert K. Kalinde and B.E. Rhoades, Kalishankar Tiwary and S.C. Debnath and Rhoades.
In 1992, Albert K. Kalinde and B.E. Rhoades successfully derived sufficient conditions for the
coefficients of Ishikawa iteration process. They proved, if the Ishikawa iterates of a continuous
self-map G (of the unit interval) converge, then they converge to a fixed print of G.
They derived these following results:

Theorem 1

Let G be a continuous self map of L = [0,1] so that the Ishikawa iterates {un} converge,

1 If lim infa, > 0 and lim inf Bn=0, then {un} converges to a fixed point of G.

2 If Ais regular and lim inf B, = 1, then {un} converges to a fixed point of G2,

Proof

1) Let lim un = z. Then, 3 a subsequence {ni} of {n} such that Iiim Bni= 0. Therefore yni = (1-
Bni) + Bni G Uni

Yni — Uni = Bni (GUni — Uni).
Thus lim |yni — uni | < 2 Bni, which implies that lim; yni = z.
Because Uni+1 — Uni = oni (Gyni-Uni) and
liminfan | Gz -z | <0, Therefore, Gz= z.
(2 > lim Sup Bn <1 =liminf Bnand lim B, = 1.
.. Yn — Gz. By the continuity of G,
Gyn — G?z. Since u, — z and A is regular, therefore,
Gz =1
By the example given below we can prove that theorem (1) is not applicable in an arbitrary Banach

space with conditions lim inf a, < 0 and 0< lim inf B, < 1. Define u(t) as a continuous function on
L (closed unit interval) with conditions given below and E is a space of u(t),

Conditions : u(0)=0, u(1) =1, 0 <u(t) <1, up = ug(t)=1, f(u)[t]=t u(t).
USing, Un+1 = (1 - (Xn) Un + Oln Gyn, yn = (1‘Bn) Un+BnGUn, n>0.
Choosing an = 2/3, Bn = %2, We get

uo(1+t+t2)n uo(lth)(1+t+t2)n
u=————>-—, =
" 3 ) 2.3
.. For each t, {un} converges but {un} has no fixed points.
Theorem 2

Let G be a continuous self map of L (closed unit interval) and {an}, {Bn} satisfy the conditions.
i) on>0,Bn<1, Vn
i) limpr=0
iii) Yo = o0
Then Un+1 = (1 - (X,n) Un + On G [(1'Bn) Un + Bn GUn]
converges to a fixed point of G.
Proof
First of all we shall prove that {un} satisfying three conditions which follow its definition,
converges.
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Definition of un
Un+1 = (L-otn)Untoin G[(1-Bn)untPn Gun], forn >0 ...ocvvvernnnee, 1)
Conditions :
{an}, {Bn} satisfy the conditions
1 an>0,Bn<1, Vn
2 limpn=0
3 o Brn=ccand up € L
Equation (1) can be modified in the form,
Un+1 = (1-0tn) Un + otn Gyn, Where yn = (1-Bn) Un + Bn Gun, N >0 .... 2
Let us consider the existence of integer k such that Gxx = xx. By equation (2), we get
Yk = Uk Which gives uk+1 = uk. Therefore by induction,
Un = Uk, V' n>Kk. Hence the sequence converges to Ux.
Now suppose that Gxn # Xn, V n. Because {un} is contained in L. Therefore, the sequence {un}

has at least one limit point in L. Let, lim infu, =& and lim sup un = &2. Then &; < &,. Taking &:
n n

< &2, we shall prove that &1 < G&1 and G& < &.. These two inequalities are true if &1 =0 and &2 =
1. When &2<1, proof is achieved by contradiction. If &2 < G&2, by the continuity of G at &, there
exists 8>0 such that u< Gu, V u e (&2 8, &2 + 8). Choosing 8<&»-£1 and using condition (2), we
have lim SUP un= &2 =Ilim SUpP yxn. By the definition of lim Sup, there exists a, 3 > 0 and no such

n n

that
Un<&E+dandyn<&+8, V N=N0vccriiviane. (3)
" The subsequence {U,, } of {un} converging to &

.. Np can be chosen in such way that U, € (E2-8, E2+8), V k> koand nio>no. Taking, A={n:n

>noand Un € (§2-08,E2+0)} vvvvvriennn. 4

we get A is non empty.

Now we shall prove A is equivalent to a number N. Let us consider any element of A be n. Then
Un < Gun giving un < yn. By (3), we arrive at the conclusion that y € (&2 - 3, &2 + 6). Now we have
Un < Yn < Gyn and from (2), we get Un+1 — Un = an (GYn — Un) = 0 which implies un < un+1. Because
n+1>n > no, (3) gives £2-6 < Un < Un+1 < &2 + & and Un+1 €(&2 - 8, &2 + 3). This shows that n+1
belongs to (4) and by induction A is equivalent to N. Hence u, € (€2- 8, €2+ 8); V n>no. Because
& satisfies the condition 8<&x-&1 or &1 < & - 8, Then &: is not a limit point of {un}, which is a
contradiction. Therefore, G&2 < &,. Similarly, for £ >0 and G&1 < &1, we get &1 < GE&.

Now we shall prove that each u € (&1, &2) is a fixed point of G. If possible, let L] € (&1, &2) so that
lj € GG. Because G is cont at lj therefore, 3 & > 0 such that u < Gu, V UE(G -0, lj+8) where
d is taken so that 0<d< Y2 (lj -£1). As & is a limit point of the sequence {un}, then 3 no such that

U <uno. Because L is compact and G is cont on L, resulting G is uniformly cont. on L. Thus
condition (2) implies that no can be chosen such that,

Un-0/2<Yn<Un+d/2........... (5) and

GUn - 8/2 < Gyn < Gun + 8/2, ¥V n = no.

Since U < unp, then U <up< U +30r U + 3 < Uuno.
If l.j < UnO < lj + 8, then Uno < GUno and reSUIting Uno S yno.
Which implies u <Yno < U+doru +8< Yno-
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Now assuming u< Yo < U + 8. Then Yno < GYno

which gives Uno < Yno < GYno. Therefore, Uno+1 — Uno = 0tno (GYno -Uno) > 0 or U < Uno < Unos1.
If we take U + 8 < Yno, We get
GUno - 8/2 > Yo - 8/2 > U +8-8/2 = U + 8/2 on account of Yno < Guno.
By (3.2.5), we have Gyno > GUno - 8/2> U + &/2

Which additionally to the condition U < uno forces us to conclude Unos1 > U .

Eqg. (5) gives two cases for the condition U +8 < Uno

Case 1 : When yno € (J +8/2, U + d)
In this case, uno < Gyno Which implies
Uno+1 = (l'OCno) Unot 0tno GYno — Uno > Cno (Yno - Uno)

By Eq (5) and U + 8 < Uno, We get
Unos1> Uno - Ono 82> U +8-8/2=U +8/2> U

Case 2 : When yno > U + . Now we faces two possibilities depending upon Gyno > Uno OF GUng <
Uno.

If Gyno > Uno, then U +8< U+ Yno and application of (5) gives US. Uno+1 = Uno - Otno Uno + @no +
GYno

> Uno - Otno Uno + @no + GUno - Gtno 6/2

> Uno + Otno (GUno - Uno) - 6/2 > Uno - &/2

>U+6-82=U+8/2> U

If GUno < Uno then U + & < Yno < Uno. This implies Uno+1 > U + &> U which further gives us Yno <
GYno. Also, if Gyno < Yno, We have Gyno<yno < Uno Which ultimately gives Uno+1 — Uno = 0tno (GYno —

Uno) < 0 Or Uno > Uno+1. Because U and & are positive real numbers. Therefore, we can find a natural

number ny satisfying Uno > Uno+1 > U - N1
Now applying this process to Uno+1, Uno+2, Uno+3 «vevvveens etc. we can prove the existence of a natural

number Ko satisfying the conditions lj-k06>§, and u, > U - k8, ¥V n > no. If it is not so, then for
any natural number k, we have either U -kd< €1 or 3 a number nk > ng such that U -3 > unk. For
k=1, U -5 < &1 which is a contradiction of the choice 6 to satisfy 26 < u -&1 and then the condition
5 < U-&y.

Thus, the second case bring us with U > un+kd > k5 > 0, V k. Because U is finite, therefore {ko}
is a bounded sequence, which is a contraction. Therefore there exists at least one ko such that un >

U -kod > €1, V' n > ng, showing that &; is not a limit point of {un} and contradicting &1 = lim inf,
Un.
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If we take U € (&1, &2) in such away that GU < U, we arrive at the conclusion that there exist a

kieN such that U +ky such that &, and u, < U - ki8, ¥ n=no. This implies & is not a limit point of
{un} and contradicts the fact & = lim Supn un. Therefore each point of (1, &) is a fixed point of
G. This argument along with the continuity of G proves the impossibility of &; < G&; and G&; <
&2 and hence &; and & are not fixed points of G.
Now, by induction method, we shall prove that the sequence {un} converges to &1 and &». For this,
fix € <% (&2 - €1). Because G is uniformly cont. and 0 < %2 (&2-&1), therefore for any €>0, 3 an o
(€)>0 satisfying the condition | Gx -Gy |< e,V X,y e Land [x-y| < a (€)........

(6)
Taking d(e) = min{a(<),e} > 0. By the second condition of the theorem along with the properties
of lim inf, for a(€)>0, 3 n1eN such that,

E1-0(e)<unand &1-0(€) <Yn N2NLeiiiiiiinnnns @)
and un-0(€) < yn < Un +3(€)

Now define,
As ={neN; n=nz and un, Yn € (£1-0(€), E1+ ()} vvvrrrnnnnnn (8)

Because &: = lim inf un and from second condition of the theorem, it is very clear that As is non
empty. Let n be an arbitary element of As. We need to show that n+1 € As.
By the definition of As and Eq. (6) along with & is a fixed point of G, it follows,

|Gyn-tn| < [Gyn-&1] + [E1-Un| < & + B(e) < 2¢
Hence we have, |un+1— Un| < |Gyn — Un| £ 2e. Because Gun # Uy and une (€1-0(€), &1 + d(€)),
therefore, &1 - 8(e) < un < & and Eq. (7) gives us £:1-6(e) < un+1. Ultimately, by this above
argument, &1 - 6(€) < Un+1 < Un + 2¢ <&1 +2¢ With &1 + 2¢ < &2 on account of 2¢ < £>-&1. Hence &;-
8(€) < Un+1 < E1+aSs &1 < Un+1 < &1 + 2¢ is impossible. Thus, un+ € (&1 - 8(e), &1 + 8(e)). Now for
Yn+1, by EQ. (7), €1 - 8 (€) < Ynu1.
Now we are left with, to prove yn+1 < &1 + 8(€). By Eq. (7), we get Un+1 - 8(€) < Yn+1 < Un+1 + 3(€)
as n+1>n>ny. AS Un+1 < &1, We get £1-8(€)<Yn+1 < E1+8(€) Or Yn+1 (&1 - 8(€), &1 + 8(€)). This
implies n+1 e As defined by (8) and As is equivalent to N. Hence |un-£1|<d(e) < €, Vn >n..
Because this inequality is valid for every small € >0 and {un} converges to &:.
By the same procedure, {un} also converges to &;. But the uniqueness of the limit point of the
sequence is contracted by & # &».

- &1= & and {un} converges.
Let ao = &1 = &>, then Gag = ao
Hence the completion of proof
A weak derivation for general Banach spaces given by Rhoades is following.
Theorem 3 : Let K be a non empty closed convex subset of a Banach space. G be a cont. self map
of K whose set of fixed points is non empty i.e. F(G)#¢.
Let {an} and {Bn} are real sequences satisfying the following conditions.
1 O<anpn<l,Vn
2 limpn=0
3 lim sup an > 0.
If {un+1} converges, then it converges to a fixed point of G, where un+1 is defined as,

Un+1 = (1-0tn) Un + atn G [(1—Bn) Un + Bn Gun], N >0
Proof
Let ao be a limit point of {un}. Because K is closed and convex, G(K)c K.
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Therefore, aceK. By EQq. (2), we get ||yn-Un|| = Bn || Gun-un||. As G is cont, the sequence {Gun — un}
also converges. Second condition of the theorem results, into lim || yn — un|[=lim Bn, lim||Gun — un||
= 0 and therefore lim y,=ao, lim Gy, = Gao. Now, we shall prove that lim Gy,=ao.

By Equation (2), ||un+1 — Un|| = an || Gyn-Un||.
Now, we get
lim sup ||un+1 — Un||=lim sup o lim sup || Gya-un|| = 0
Now condition (I11) implies that lim ||Gyn-un||=0
which further implies that ao is a fixed point of G.
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