

Mathematically Examination Of Σ -Statistical Convergence

Nadimpally Srinivasulu Goud Research Scholar, Department Of Mathematics, Monad University, Hapur, Uttar Pradesh (India)

Dr. Rajeev Kumar Associate Professor, Department Of Mathematics, Monad University, Hapur, Uttar Pradesh (India)

Abstract:

In this paper we study one more extension of the concept of statistical convergence namely almost λ -statistical convergence. In section 1.2 we discuss some inclusion relations between almost λ -statistical convergence, strong almost (V, λ) -summability and strong almost convergence. Further in section 1.3 we study the necessary and sufficient condition for an almost statistically convergent sequence to be almost λ -statistically convergent.

[Rani, A. and Kumar, R. STUDIES ON σ -STATISTICAL CONVERGENCE AND LACUNARY σ -STATISTICAL CONVERGENCE. *Rep Opinion* 2021;13(x):-]. ISSN 1553-9873 (print); ISSN 2375-7205 (online). <http://www.sciencepub.net/report>. x. doi:[10.7537/marsroj13xx21xx](https://doi.org/10.7537/marsroj13xx21xx)

Keywords: Parameters, Concetroidal matrices, Class 1, Related

1.1 Introduction

Let s be the set of all real or complex sequences and let l_∞ , c and c_0 denote the Banach spaces of bounded, convergent and null sequences $x = \{\xi_k\}$ respectively normed by $\|x\| = \sup_k |\xi_k|$.

Suppose D is the shift operator on s , i.e. $D(\{\xi_k\}) = \{\xi_{k+1}\}$.

Definition 1.1.1. A Banach limit [1] is a linear functional L defined on l_∞ , such that

- (i) $L(x) \geq 0$ if $\xi_k \geq 0$ for all k ,
- (ii) $L(Dx) = L(x)$ for all $x \in l_\infty$,
- (iii) $L(e) = 1$ where $e = \{1, 1, 1, \dots\}$.

Definition 1.1.2. A sequence $x \in l_\infty$ is said to be almost convergent [19] if all Banach limits of x coincide.

Let \hat{c} and \hat{c}_0 denote the sets of all sequences which are almost convergent and almost convergent to zero. It was proved by Lorentz [19] that

$$\hat{c} = \{x = \{\xi_k\}: \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n \xi_{k+m} \text{ exists uniformly in } m\}.$$

Several authors including Duran [7], King [15] and Lorentz [19] have studied almost convergent sequences.

Definition 1.1.3. A sequence $x = \{\xi_k\}$ is said to be $(C, 1)$ -summable if and only if $\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n \xi_k$ exists.

Definition 1.1.4. A sequence $x = \{\xi_k\}$ is said to be strongly (Cesáro) summable to the number ξ if

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n |\xi_k - \xi| = 0.$$

Spaces of strongly Cesáro summable sequences were discussed by Kuttner [17] and some others and this concept was generalized by Maddox [20].

Remark 1.1.1. Just as summability gives rise to strong summability, it was quite natural to expect that almost convergence must give rise to a new type of convergence, namely strong almost convergence and this concept was introduced and discussed by Maddox [20].

Definition 1.1.1. A sequence $x = \{\xi_k\}$ is said to be strongly almost convergent to the number ξ if

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n |\xi_{k+m} - \xi| = 0 \quad \text{uniformly in } m.$$

If $[\hat{c}]$ denotes the set of all strongly almost convergent sequences, then

$$[\hat{c}] = \{x = \{\xi_k\}: \text{for some } \xi, \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n |\xi_{k+m} - \xi| = 0 \text{ uniformly in } m\}.$$

Let $\lambda = \{\lambda_n\}$ be a non-decreasing sequence of positive numbers tending to ∞ such that $\lambda_{n+1} \leq \lambda_n + 1, \lambda_1 = 1$.

Definition 1.1.7. Let $x = \{\xi_k\}$ be a sequence. The generalized de la Valée-Pousin mean is defined by

$$t_n(x) = \frac{1}{\lambda_n} \sum_{k \in I_n} \xi_k$$

where $I_n = [n - \lambda_n + 1, n]$.

Definition 1.1.8. A sequence $x = \{\xi_k\}$ is said to be (V, λ) -summable to a number ξ [18] if $t_n(x) \rightarrow \xi$ as $n \rightarrow \infty$.

Remark 1.1.9. Let $\lambda_n = n$. Then $I_n = [1, n]$ and

$$t_n(x) = \frac{1}{n} \sum_{k=1}^n \xi_k.$$

Hence (V, λ) -summability reduces to $(C, 1)$ -summability when $\lambda_n = n$.

Definition 1.1.10. A sequence $x = \{\xi_k\}$ is said to be strongly almost (V, λ) -summable to a number ξ if

$$\lim_{n \rightarrow \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} |\xi_{k+m} - \xi| = 0 \quad \text{uniformly in } m.$$

In this case we write $\xi_k \rightarrow \xi[\hat{V}, \lambda]$ and $[\hat{V}, \lambda]$ denotes the set of all strongly almost (V, λ) -summable sequences,

i.e. $[\hat{V}, \lambda] = \{x = \{\xi_k\}: \text{for some } \xi, \lim_{n \rightarrow \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} |\xi_{k+m} - \xi| = 0 \text{ uniformly in } m\}.$

Definition 1.1.11. A sequence $x = \{\xi_k\}$ is said to be almost statistically convergent to the number ξ if for each $\varepsilon > 0$

$$\lim_{n \rightarrow \infty} \frac{1}{n} |\{k \leq n: |\xi_{k+m} - \xi| \geq \varepsilon\}| = 0 \quad \text{uniformly in } m.$$

In this case we write $\hat{S}\text{-}\lim \xi_k = \xi$ or $\xi_k \rightarrow \xi(\hat{S})$ and \hat{S} denotes the set of all almost statistically convergent sequences.

Definition 1.1.12. A sequence $x = \{\xi_k\}$ is said to be almost λ -statistically convergent to the number ξ if for each $\varepsilon > 0$

$$\lim_{n \rightarrow \infty} \frac{1}{\lambda_n} |\{k \in I_n: |\xi_{k+m} - \xi| \geq \varepsilon\}| = 0 \quad \text{uniformly in } m.$$

In this case we write $\hat{S}_\lambda\text{-}\lim \xi_k = \xi$ or $\xi_k \rightarrow \xi(\hat{S}_\lambda)$ and \hat{S}_λ denotes the set of all almost λ -statistically convergent sequences.

Remark 1.1.13. If $\lambda_n = n$, then \hat{S}_λ is same as \hat{S} .

1.2 SOME INCLUSION RELATION BETWEEN ALMOST λ -STATISTICAL CONVERGENCE, STRONG ALMOST (V, λ) -SUMMABILITY AND STRONG ALMOST CONVERGENCE

In this section we study some inclusion relations between almost λ -statistical convergence, strong almost (V, λ) -summability and strong almost convergence. First we show that every strongly almost summable sequence is almost statistically convergent.

Theorem 1.4.1. If a sequence $x = \{\xi_k\}$ is almost strongly summable to ξ , then it is almost statistically convergent to ξ .

Proof. Suppose that $x = \{\xi_k\}$ is almost strongly summable to ξ . Then

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n |\xi_{k+m} - \xi| = 0 \quad \text{uniformly in } m. \quad \dots(1)$$

Let us take some $\varepsilon > 0$. We have

$$\begin{aligned} \sum_{k=1}^n |\xi_{k+m} - \xi| &\geq \sum_{\substack{k \in I_n \\ |\xi_{k+m} - \xi| \geq \varepsilon}} |\xi_{k+m} - \xi| \\ &\geq \varepsilon |\{k \leq n : |\xi_{k+m} - \xi| \geq \varepsilon\}| \end{aligned}$$

Consequently,

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n |\xi_{k+m} - \xi| \geq \varepsilon \lim_{n \rightarrow \infty} \frac{1}{n} |\{k \leq n : |\xi_{k+m} - \xi| \geq \varepsilon\}|$$

Hence by (1) and the fact that ε is fixed number, we have

$$\lim_{n \rightarrow \infty} \frac{1}{n} |\{k \leq n : |\xi_{k+m} - \xi| \geq \varepsilon\}| = 0 \quad \text{uniformly in } m.$$

\Rightarrow x is almost statistically convergent.

Theorem 1.2.2. Let $\lambda = \{\lambda_n\}$ be same as defined earlier. Then

(i) $\xi_k \rightarrow \xi[\hat{V}, \lambda] \Rightarrow \xi_k \rightarrow \xi(\hat{S}_\lambda)$

and the inclusion $[\hat{V}, \lambda] \subseteq \hat{S}_\lambda$ is proper,

(ii) if $x \in l_\infty$ and $\xi_k \rightarrow \xi(\hat{S}_\lambda)$, then $\xi_k \rightarrow \xi[\hat{V}, \lambda]$ and hence $\xi_k \rightarrow \xi[\hat{c}]$ provided $x = \{\xi_k\}$ is not eventually constant.

(iii) $\hat{S}_\lambda \cap l_\infty = [\hat{V}, \lambda] \cap l_\infty$,

where l_∞ denotes the set of bounded sequences.

Proof. (i). Since $\xi_k \rightarrow \xi[\hat{V}, \lambda]$, for each $\varepsilon > 0$, we have

$$\lim_{n \rightarrow \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} |\xi_{k+m} - \xi| = 0 \quad \text{uniformly in } m. \quad \dots(2)$$

Let us take some $\varepsilon > 0$. We have

$$\begin{aligned} \sum_{k \in I_n} |\xi_{k+m} - \xi| &\geq \sum_{\substack{k \in I_n \\ |\xi_{k+m} - \xi| \geq \varepsilon}} |\xi_{k+m} - \xi| \\ &\geq \varepsilon |\{k \in I_n : |\xi_{k+m} - \xi| \geq \varepsilon\}| \end{aligned}$$

Consequently,

$$\lim_{n \rightarrow \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} |\xi_{k+m} - \xi| \geq \varepsilon \lim_{n \rightarrow \infty} \frac{1}{\lambda_n} |\{k \in I_n : |\xi_{k+m} - \xi| \geq \varepsilon\}|$$

Hence by using (2) and the fact that ε is fixed number, we have

$$\lim_{n \rightarrow \infty} \frac{1}{\lambda_n} |\{k \in I_n : |\xi_{k+m} - \xi| \geq \varepsilon\}| = 0 \quad \text{uniformly in } m,$$

i.e. $\xi_k \rightarrow \xi(\hat{S}_\lambda)$.

It is easy to see that $[\hat{V}, \lambda] \subsetneq \hat{S}_\lambda$.

(ii). Suppose that $\xi_k \rightarrow \xi(\hat{S}_\lambda)$ and $x \in l_\infty$. Then for each $\varepsilon > 0$

$$\lim_{n \rightarrow \infty} \frac{1}{\lambda_n} |\{k \in I_n : |\xi_{k+m} - \xi| \geq \varepsilon\}| = 0 \quad \text{uniformly in } m. \quad \dots(3)$$

Since $x \in l_\infty$, there exists a positive real number M such that $|\xi_{k+m} - \xi| \leq M$ for all k and m . For given $\varepsilon > 0$, we have

$$\begin{aligned} \frac{1}{\lambda_n} \sum_{k \in I_n} |\xi_{k+m} - \xi| &= \frac{1}{\lambda_n} \sum_{\substack{k \in I_n \\ |\xi_{k+m} - \xi| \geq \varepsilon}} |\xi_{k+m} - \xi| + \frac{1}{\lambda_n} \sum_{\substack{k \in I_n \\ |\xi_{k+m} - \xi| < \varepsilon}} |\xi_{k+m} - \xi| \\ &\leq \frac{1}{\lambda_n} \sum_{\substack{k \in I_n \\ |\xi_{k+m} - \xi| \geq \varepsilon}} M + \frac{1}{\lambda_n} \sum_{k \in I_n} \varepsilon \end{aligned}$$

$$\begin{aligned}
 &= \frac{M}{\lambda_n} |\{k \in I_n : |\xi_{k+m} - \xi| \geq \varepsilon\}| + \varepsilon \frac{1}{\lambda_n} [n - (n - \lambda_n + 1) + 1] \\
 &= \frac{M}{\lambda_n} |\{k \in I_n : |\xi_{k+m} - \xi| \geq \varepsilon\}| + \varepsilon \frac{1}{\lambda_n} \lambda_n \\
 &= \frac{M}{\lambda_n} |\{k \in I_n : |\xi_{k+m} - \xi| \geq \varepsilon\}| + \varepsilon \\
 \Rightarrow \quad \lim_{n \rightarrow \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} |\xi_{k+m} - \xi| &\leq M \lim_{n \rightarrow \infty} \frac{1}{\lambda_n} |\{k \in I_n : |\xi_{k+m} - \xi| \geq \varepsilon\}| + \varepsilon
 \end{aligned}$$

Hence by using (3), we get

$$\begin{aligned}
 \lim_{n \rightarrow \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} |\xi_{k+m} - \xi| &= 0 \quad \text{uniformly in } m. \quad \dots(4) \\
 \Rightarrow \quad \xi_k &\rightarrow \xi[\hat{V}, \lambda].
 \end{aligned}$$

Further, we have

$$\begin{aligned}
 \frac{1}{n} \sum_{k=1}^n |\xi_{k+m} - \xi| &= \frac{1}{n} \sum_{k=1}^{n-\lambda_n} |\xi_{k+m} - \xi| + \frac{1}{n} \sum_{k=n-\lambda_n+1}^n |\xi_{k+m} - \xi| \\
 &= \frac{1}{n} \sum_{k=1}^{n-\lambda_n} |\xi_{k+m} - \xi| + \frac{1}{n} \sum_{k \in I_n} |\xi_{k+m} - \xi| \\
 &\leq \frac{1}{\lambda_n} \sum_{k=1}^{n-\lambda_n} |\xi_{k+m} - \xi| + \frac{1}{\lambda_n} \sum_{k \in I_n} |\xi_{k+m} - \xi| \\
 &\leq \frac{2}{\lambda_n} \sum_{k \in I_n} |\xi_{k+m} - \xi| \\
 \Rightarrow \quad \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n |\xi_{k+m} - \xi| &\leq 2 \lim_{n \rightarrow \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} |\xi_{k+m} - \xi|
 \end{aligned}$$

Hence

$$\begin{aligned}
 \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n |\xi_{k+m} - \xi| &= 0 \text{ uniformly in } m. \quad [\text{Using (4)}] \\
 \Rightarrow \quad \xi_k &\rightarrow \xi[\hat{c}].
 \end{aligned}$$

(iii). Let $x \in l_\infty$ be such that $\xi_k \rightarrow \xi(\hat{S}_\lambda)$.

Then by (ii),

$$\xi_k \rightarrow \xi[\hat{V}, \lambda].$$

Thus

$$\hat{S}_\lambda \cap l_\infty \subset [\hat{V}, \lambda] \cap l_\infty. \quad \dots(5)$$

Also by (i), we have

$$\xi_k \rightarrow \xi[\hat{V}, \lambda] \Rightarrow \xi_k \rightarrow \xi(\hat{S}_\lambda).$$

So

$$[\hat{V}, \lambda] \subset \hat{S}_\lambda.$$

$$\Rightarrow [\hat{V}, \lambda] \cap l_\infty \subset \hat{S}_\lambda \cap l_\infty. \quad \dots(6)$$

Hence by (5) and (6)

$$\hat{S}_\lambda \cap l_\infty = [\hat{V}, \lambda] \cap l_\infty.$$

This completes the proof of the theorem

1.3 NECESSARY AND SUFFICIENT CONDITION FOR AN ALMOST STATISTICALLY CONVERGENT SEQUENCE TO BE ALMOST λ -STATISTICALLY CONVERGENT

Since $\frac{\lambda_n}{n}$ is bounded by 1, we have $\hat{S}_\lambda \subseteq \hat{S}$ for all λ . In this section we discuss the following relation.

Theorem 1.4.1. $\hat{S} \subseteq \hat{S}_\lambda$ if and only if

$$\liminf_{n \rightarrow \infty} \frac{\lambda_n}{n} > 0, \quad \dots(7)$$

i.e. every almost statistically convergent sequence is almost λ -statistically convergent if and only if (7) holds.

Proof. Let us take an almost statistically convergent sequence $x = \{\xi_k\}$ and assume that (7) holds.

Then for each $\varepsilon > 0$, we have

$$\lim_{n \rightarrow \infty} \frac{1}{n} |\{k \leq n: |\xi_{k+m} - \xi| \geq \varepsilon\}| = 0 \quad \text{uniformly in } m. \quad \dots(8)$$

For given $\varepsilon > 0$ we get,

$$\{k \leq n: |\xi_{k+m} - \xi| \geq \varepsilon\} \supset \{k \in I_n: |\xi_{k+m} - \xi| \geq \varepsilon\}.$$

Therefore,

$$\begin{aligned} \frac{1}{n} |\{k \leq n: |\xi_{k+m} - \xi| \geq \varepsilon\}| &\geq \frac{1}{n} |\{k \in I_n: |\xi_{k+m} - \xi| \geq \varepsilon\}| \\ &\geq \frac{\lambda_n}{n} \frac{1}{\lambda_n} |\{k \in I_n: |\xi_{k+m} - \xi| \geq \varepsilon\}| \end{aligned}$$

Taking the limit as $n \rightarrow \infty$ and using (7), we get

$$\lim_{n \rightarrow \infty} \frac{1}{\lambda_n} |\{k \in I_n: |\xi_{k+m} - \xi| \geq \varepsilon\}| = 0 \quad \text{uniformly in } m,$$

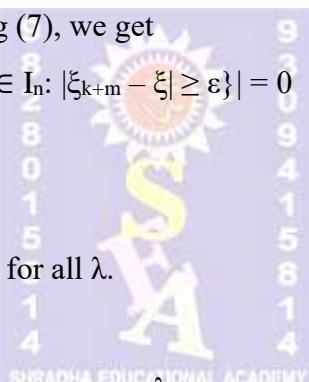
i.e. $\xi_k \rightarrow \xi(\hat{S}_\lambda)$.

Hence $\hat{S} \subseteq \hat{S}_\lambda$ for all λ .

Conversely, suppose that $\hat{S} \subseteq \hat{S}_\lambda$ for all λ .

We have to prove that (7) holds.

Let us assume that



$$\liminf_{n \rightarrow \infty} \frac{\lambda_n}{n} = 0.$$

As in [9], we can choose a subsequence $\{n(j)\}$ such that

$$\frac{\lambda_{n(j)}}{n(j)} < \frac{1}{j}.$$

Define a sequence $x = \{\xi_i\}$ by

$$\xi_i = \begin{cases} 1 & \text{if } i \in I_{n(j)}, j=1,2,3, \dots \\ 0 & \text{otherwise.} \end{cases}$$

Then $x \in [\hat{c}]$ and hence by Theorem 1.4.1, $x \in \hat{S}$. But on the other hand $x \notin [\hat{V}, \lambda]$ and Theorem 1.4.1 (ii) implies that $x \notin \hat{S}_\lambda$. Hence (7) is necessary.

This completes the proof of the theorem

References:

- [1] I.J. Maddox, Statistical convergence in a locally convex space, *Math. Proc. Camb. Phil. Soc.* 104 (1988) 141-145.
- [2] Mursaleen, Invariant means and some matrix transformations, *Tamkang J. Math.* 10 (2) (1979) 183-188.
- [3] Mursaleen, Matrix transformations between some new sequence spaces, *Houston J. Math.* 9 (4) (1983) 505-509.
- [4] Mursaleen, λ -statistical convergence, *Math. Slovaca* 50 (1) (2000) 111-115.

- [5] I. Niven and H.S. Zuckerman, *An Introduction to The Theory of Numbers*, Fourth Ed., New York, John Wiley and Sons, 1980.
- [6] T. Šalát, On statistically convergent sequences of real numbers, *Math. Slovaca* 30 (2) (1980) 139-150.
- [7] E. Savas, Some sequence spaces involving invariant means, *Indian J. Math.* 31 (1) (1989) 1-8.
- [8] E. Savas, On lacunary strong σ -convergence, *Indian J. Pure Appl. Math.* 21 (4) (1990) 359-365.
- [9] E. Savas and F. Nuray, On σ -statistical convergence and lacunary σ -statistical convergence, *Math. Slovaca* 43 (1993) 309-315.
- [10] E. Savas, Strong almost convergence and almost λ -statistical convergence, *Hokkaido Math. J.* 29 (2000) 531-536.
- [11] P. Schaefer, Infinite matrices and invariant means, *Proc. Amer. Math. Soc.* 36 (1) (1972) 104-110.
- [12] I.J. Schoenberg, The integrability of certain functions and related summability methods, *Amer. Math. Monthly* 66 (1959) 361-375.

