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Abstract:

In this paper we study one more extension of the concept of statistical convergence namely
almost A-statistical convergence. In section 1.2 we discuss some inclusion relations between
almost A-statistical convergence, strong almost (V,A)-summability and strong almost
convergence. Further in section 1.3 we study the necessary and sufficient condition for an
almost statistically convergent sequence to be almost A-statistically convergent.
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1.1 Introduction
Let s be the set of all real or complex sequences and let l.., ¢ and co denote the Banach spaces
of bounded, convergent and null sequences x = {Ek} respectively normed by |[x|| = sup|&x|-

k

Suppose D is the shift operator on's,  i.e. D({&}) = {Ek+1}-
Definition 1.1.1. A Banach limit [1] is a linear functional L defined on .., such that
Q) L(x) 2 0 if & > 0 for all k,
(i)  L(Dx) =L(x) forall x € L,
(iii)  L(e)=1wheree= {1,1,1,...}.
Definition 1.1.2. A sequence X € | is said to be almost convergent [19] if all Banach limits
of x coincide.
Let ¢ and €, denote the sets of all sequences which are almost convergent and almost

convergent to zero. It was proved by Lorentz [19] that
¢ = {x={&}: lim EZE;M exists uniformly in m}.
n— o n 1

Several authors including Duran [7], King [15] and Lorentz [19] have studied almost
convergent sequences.

Definition 1.1.3. A sequence x = {&k} is said to be (C,1)-summable if and only if lim EZE_,,(
n—oo n 1

exists.
Definition 1.1.4. A sequence x = {&} is said to be strongly (Cesaro) summable to the number
3 if

N

lim = 31 & &= 0.

n—-o N 1
Spaces of strongly Cesaro summable sequences were discussed by Kuttner [17] and some
others and this concept was generalized by Maddox [20].
Remark 1.1.1. Just as summability gives rise to strong summability, it was quite natural to
expect that almost convergence must give rise to a new type of convergence, namely strong
almost convergence and this concept was introduced and discussed by Maddox [20].
Definition 1.1.1. A sequence x = {&k} IS said to be strongly almost convergent to the number
€ if

n—

lim * D lEm—&=0 uniformly in m.
*N G

If [€] denotes the set of all strongly almost convergent sequences, then
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[€] = {x = {&k}: for some &, Ilm Z| E.m — €| = 0 uniformly in m}.

Let A = {An} be a non-decreasing sequence of positive numbers tending to oo such that
}\,n+1 S)\.n + 1, }\,1 =1.
Definition 1.1.7. Let x = {&} be a sequence. The generalized de la Valée-Pousin mean is
defined by

t(X) = Z S

n kel,
where In = [n—An +1, n].
Definition 1.1.8. A sequence x = {&k} is said to be (V,A)-summable to a number & [18] if ta(X)
— & as n—o0,

Remark 1.1.9. Let A\n = n. Then I, = [1, n] and
1 n
ta(X) = = Z & -
nia

Hence (V,L)-summability reduces to (C,1)-summability when A, = n.
Definition 1.1.10. A sequence x = {&k} is said to be strongly almost (V,L)-summable to a
number & if

I|m — Z| Eom — &l = uniformly in m.

n kel,

In this case we write &k — &[ V ] and [V ,A] denotes the set of all strongly almost (V,\)-
summable sequences,

ie. [VA]={x= {&}: for some &, I|m - Zl Eem — €| = 0 uniformly in m}.

n kel,

Definition 1.1.11. A sequence X = {&} is said to be almost statistically convergent to the
number & if for each € > 0

lim E|{k§n: |&ksm—E| =€} =0 uniformly in m.
n—oo n

In this case we write S-lim & = & or & — &(S) and S denotes the set of all almost
statistically convergent sequences.

Definition 1.1.12. A sequence x = {&} is said to be almost A-statistically convergent to the
number ¢ if for each € > 0

lim % {K € In: |&+m — & > €}|=0  uniformly in m.

In this case we write é -lim & = & or & — &( éx) and ék denotes the set of all almost A-
statistically convergent sequences.
Remark 1.1.13. If A, = n, then S issame as S.

1.2 SOME INCLUSION RELATION BETWEEN ALMOST A-STATISTICAL
CONVERGENCE, STRONG ALMOST (V,A)-SUMMABILITY AND STRONG
ALMOST CONVERGENCE

In this section we study some inclusion relations between almost A-statistical
convergence, strong almost (V,L)-summability and strong almost convergence. First we show
that every strongly almost summable sequence is almost statistically convergent.

Theorem 1.4.1. If a sequence x = {&} is almost strongly summable to &, then it is almost
statistically convergent to &.
Proof. Suppose that x = {&k} is almost strongly summable to &. Then

lim = Z|§k+m g = uniformly in m. ..(D)

n—ow nkl

Let us take some £ > 0. We have
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Zl E:k+m §| = ZI &k+m

‘Egk +m EJ‘ 2€
> gl{k < n: [Ex+m — §| > €}
Consequently,

N L .1
lim - Z| Erom — &l =€ liM H|{k§n: |Ek+m — | > €}
n—oo k:l n— oo

Hence by (1) and the fact that € is fixed number, we have
r!m %|{k <n: |&+m—&l>€}[=0  uniformlyinm.
= x is almost statistically convergent.
Theorem 1.2.2. Let A = {\n} be same as defined earlier. Then
i) &—EVA=28—S)
and the inclusion [V ,A] € éx IS proper,
(i) if X € |, and & — E',(ék ), then & — &[\7 ,A] and hence & — &[€] provided x = {&}
is not eventually constant.
iy S, Nl=[VAINL,
where |, denotes the set of bounded sequences.
Proof. (i). Since & — &[ [V X] for each € > 0, we have

I|m — Z| B8 A uniformly in m. ..(2)

n kel,

Let us take some € > 0. We have

Zlémm_&'z Zl&kﬁ-m_a

kel, kel
‘E:k+m_§r2 €

> gl{k € In: [Ek+m — &| > €}|
Consequently,

nm— Sl n -z elim —|{ke In &kom — & > €}

n kel,

Hence by using (2) and the fact that ¢ is fixed number, we have

lim %|{ke Int [Eom — & > £} = 0 uniformly in m,

ie &— &S,).
It is easy to see that [V 1] € S, .
(i1). Suppose that & — &(ék) and X € l.. Then for each € > 0

lim % {K € In: [Eksm — &[> €} =0 uniformly in m. ...(3)

Since X € |, there exists a positive real number M such that |Ek+m — & < M for all k and m.
For given ¢ > O we have

N Z| ék+m = i Z| &k+m E.>| + N Zl &k+m

n kel, 7\‘n kel, n kel
|Exs m‘§‘>3 |Ekim— FJ<5
1
< — M+ — >¢
A, g A g
‘&km &‘>E
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- M ke  [Eom— 8 > e} + 8% [N—(n-An +1) + 1]

n

KK € In: |Eeem — & > &} + skixn

n

Jlzrlz

|{k € In: |Z:,k+m—§| 28}| +¢

= Ilgnk—ZIékm g < Mnm—|{ke I fegom — & > 8} + ¢

n kel,

Hence by using (3), we get
I|m = Z| o — &l = uniformly in m. ..(4)

n kel,
= & — E[V 2]
Further, we have

3 18- Zlam 442 Pt

knk+l

= ﬁznlamm |+ _Z|gk+m

kel
n-A,

1K
S}\’_ |§k+m §|+_Z|E.>k+m
k=1 n kel,
2
< I
— }\, ZI E.'k+m
= lim = Zlakm §|<2llm_2|§k+m_
el L) Ao ket
Hence
I|m Z| Eom — &l = Ouniformly in m. [Using (4)]
L=
= & — &[¢].
(iii). Let X € I, be such that & — & (S,).
Then by (ii),
& — E[V AL
Thus
S,Nl,c[VA]N L. ..(5)
Also by (i), we have
& — [V .A] = & — &(S)).
So [\7 A] éx.
= [VAINl.cS, Nl ...(6)

Hence by (5) and (6)

S, Nlo=[V AN L.

This completes the proof of the theorem

1.3 NECESSARY AND SUFFICIENT CONDITION FOR AN ALMOST
STATISTICALLY CONVERGENT SEQUENCE TO BE ALMOST A-
STATISTICALLY CONVERGENT
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Since Mo is bounded by 1, we have éx c S for all A. In this section we discuss the following

n
relation.
Theorem 1.4.1. S € S, ifand only if
Iiminfk—n >0, ..(7)
nbo N

i.e. every almost statistically convergent sequence is almost A-statistically convergent if and
only if (7) holds.
Proof. Let us take an almost statistically convergent sequence x = {&k} and assume that (7)

holds.
Then for each € > 0, we have

lim 1|{k <n:|é+m—¢&l>¢€}|=0  uniformly in m. ...(8)
n—w n

For given € > 0 we get,
(k<n: |&sm—& >} D{KE In: [Exem — E| > €}
Therefore,

0 om — &1 6312 THK € I fgom &= &}
R
n A

n

Taking the limit as n—oo and using (7), we get

lim xi K € In: Jexem — &> €} = 0 uniformly in m,

e & — &S,).
Hence S S, forall A.

Conversely, suppose that S c éx for all .

We have to prove that (7) holds.
Let as assume that

Iiminfh =0.
nso N

As in [9], we can choose a subsequence {n(j)} such that

Mo 1

nG@) |
Define a sequence x = {&} by

1 ifiel,j=123,..

S99 otherwise.
Then x € [€] and hence by Theorem 1.4.1, x € S. But on the other hand X & [V A\l

and Theorem 1.4.1 (ii) implies that x ¢ ék. Hence (7) is necessary.

This completes the proof of the theorem
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